Reyme Herman, Bethan Kinniment-Williams, Michelle Rudden, Alexander Gordon James, Anthony J Wilkinson, Barry Murphy, Gavin H Thomas
{"title":"Identification of a Staphylococcal dipeptidase involved in the production of human body odour.","authors":"Reyme Herman, Bethan Kinniment-Williams, Michelle Rudden, Alexander Gordon James, Anthony J Wilkinson, Barry Murphy, Gavin H Thomas","doi":"10.1016/j.jbc.2024.107928","DOIUrl":null,"url":null,"abstract":"<p><p>The production of human body odour is the result of the action of commensal skin bacteria, including Staphylococcus hominis, acting to biotransform odourless apocrine gland secretions into volatile chemicals like thioalcohols such as 3-methyl-3-sulphanylhexan-1-ol (3M3SH). As the secreted odour precursor Cys-Gly-3M3SH contains a dipeptide, yet the final enzyme in the biotransformation pathway only functions on Cys-3M3SH, we sought to identify the remaining step in this human-adapted biochemical pathway using a novel coupled enzyme assay. Purification of this activity from S. hominis extracts led to the identification of the M20A-family PepV peptidase (ShPepV) as the primary Cys-Gly-3M3SH dipeptidase. To establish whether this was a primary substrate for PepV, the recombinant protein was purified and demonstrated broad activity against diverse dipeptides. The binding site for Cys-Gly-3M3SH was predicted using modelling, which suggested mutations that might accommodate this ligand more favourably. Indeed, a D437A resulted in an almost 6-fold increase in the k<sub>cat</sub>/K<sub>M</sub>, while other introduced mutations reduced or abolished function. Together these data identify an enzyme capable of catalysing the missing step in an ancient human-specific biochemical transformation and suggest that the production of 3M3SH neither uses a dedicated transporter nor peptidase for its breakdown, with only the final cleavage step, catalysed by PatB C-S β-lyase, being a unique enzyme.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107928","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The production of human body odour is the result of the action of commensal skin bacteria, including Staphylococcus hominis, acting to biotransform odourless apocrine gland secretions into volatile chemicals like thioalcohols such as 3-methyl-3-sulphanylhexan-1-ol (3M3SH). As the secreted odour precursor Cys-Gly-3M3SH contains a dipeptide, yet the final enzyme in the biotransformation pathway only functions on Cys-3M3SH, we sought to identify the remaining step in this human-adapted biochemical pathway using a novel coupled enzyme assay. Purification of this activity from S. hominis extracts led to the identification of the M20A-family PepV peptidase (ShPepV) as the primary Cys-Gly-3M3SH dipeptidase. To establish whether this was a primary substrate for PepV, the recombinant protein was purified and demonstrated broad activity against diverse dipeptides. The binding site for Cys-Gly-3M3SH was predicted using modelling, which suggested mutations that might accommodate this ligand more favourably. Indeed, a D437A resulted in an almost 6-fold increase in the kcat/KM, while other introduced mutations reduced or abolished function. Together these data identify an enzyme capable of catalysing the missing step in an ancient human-specific biochemical transformation and suggest that the production of 3M3SH neither uses a dedicated transporter nor peptidase for its breakdown, with only the final cleavage step, catalysed by PatB C-S β-lyase, being a unique enzyme.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.