Machine Learning to Predict Interim Response in Pediatric Classical Hodgkin Lymphoma Using Affordable Blood Tests.

IF 3.2 Q2 ONCOLOGY
JCO Global Oncology Pub Date : 2024-10-01 Epub Date: 2024-10-24 DOI:10.1200/GO.23.00435
Jennifer A Geel, Artsiom Hramyka, Jan du Plessis, Yasmin Goga, Anel Van Zyl, Marc G Hendricks, Thanushree Naidoo, Rema Mathew, Lizette Louw, Amy Carr, Beverley Neethling, Tanya M Schickerling, Fareed Omar, Liezl Du Plessis, Elelwani Madzhia, Vhutshilo Netshituni, Katherine Eyal, Thandeka V Z Ngcana, Tom Kelsey, Daynia E Ballott, Monika L Metzger
{"title":"Machine Learning to Predict Interim Response in Pediatric Classical Hodgkin Lymphoma Using Affordable Blood Tests.","authors":"Jennifer A Geel, Artsiom Hramyka, Jan du Plessis, Yasmin Goga, Anel Van Zyl, Marc G Hendricks, Thanushree Naidoo, Rema Mathew, Lizette Louw, Amy Carr, Beverley Neethling, Tanya M Schickerling, Fareed Omar, Liezl Du Plessis, Elelwani Madzhia, Vhutshilo Netshituni, Katherine Eyal, Thandeka V Z Ngcana, Tom Kelsey, Daynia E Ballott, Monika L Metzger","doi":"10.1200/GO.23.00435","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Response assessment of classical Hodgkin lymphoma (cHL) with positron emission tomography-computerized tomography (PET-CT) is standard of care in well-resourced settings but unavailable in most African countries. We aimed to investigate correlations between changes in PET-CT findings at interim analysis with changes in blood test results in pediatric patients with cHL in 17 South African centers.</p><p><strong>Methods: </strong>Changes in ferritin, lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), albumin, total white cell count (TWC), absolute lymphocyte count (ALC), and absolute eosinophil count were compared with PET-CT Deauville scores (DS) after two cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine in 84 pediatric patients with cHL. DS 1-3 denoted rapid early response (RER) while DS 4-5 denoted slow early response (SER). Missing values were imputed using the k-nearest neighbor algorithm. Baseline and follow-up blood test values were combined into a single difference variable. Data were split into training and testing sets for analysis using Python scikit-learn 1.2.2 with logistic regression, random forests, naïve Bayes, and support vector machine classifiers.</p><p><strong>Results: </strong>Random forest analysis achieved the best validated test accuracy of 73% when predicting RER or SER from blood samples. When applied to the full data set, the optimal model had a predictive accuracy of 80% and a receiver operating characteristic AUC of 89%. The most predictive variable was the differences in ALC, contributing 21% to the model. Differences in ferritin, LDH, and TWC contributed 15%-16%. Differences in ESR, hemoglobin, and albumin contributed 11%-12%.</p><p><strong>Conclusion: </strong>Changes in low-cost, widely available blood tests may predict chemosensitivity for pediatric cHL without access to PET-CT, identifying patients who may not require radiotherapy. Changes in these nonspecific blood tests should be assessed in combination with clinical findings and available imaging to avoid undertreatment.</p>","PeriodicalId":14806,"journal":{"name":"JCO Global Oncology","volume":"10 ","pages":"e2300435"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529834/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Global Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/GO.23.00435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Response assessment of classical Hodgkin lymphoma (cHL) with positron emission tomography-computerized tomography (PET-CT) is standard of care in well-resourced settings but unavailable in most African countries. We aimed to investigate correlations between changes in PET-CT findings at interim analysis with changes in blood test results in pediatric patients with cHL in 17 South African centers.

Methods: Changes in ferritin, lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), albumin, total white cell count (TWC), absolute lymphocyte count (ALC), and absolute eosinophil count were compared with PET-CT Deauville scores (DS) after two cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine in 84 pediatric patients with cHL. DS 1-3 denoted rapid early response (RER) while DS 4-5 denoted slow early response (SER). Missing values were imputed using the k-nearest neighbor algorithm. Baseline and follow-up blood test values were combined into a single difference variable. Data were split into training and testing sets for analysis using Python scikit-learn 1.2.2 with logistic regression, random forests, naïve Bayes, and support vector machine classifiers.

Results: Random forest analysis achieved the best validated test accuracy of 73% when predicting RER or SER from blood samples. When applied to the full data set, the optimal model had a predictive accuracy of 80% and a receiver operating characteristic AUC of 89%. The most predictive variable was the differences in ALC, contributing 21% to the model. Differences in ferritin, LDH, and TWC contributed 15%-16%. Differences in ESR, hemoglobin, and albumin contributed 11%-12%.

Conclusion: Changes in low-cost, widely available blood tests may predict chemosensitivity for pediatric cHL without access to PET-CT, identifying patients who may not require radiotherapy. Changes in these nonspecific blood tests should be assessed in combination with clinical findings and available imaging to avoid undertreatment.

使用经济实惠的血液化验工具通过机器学习预测小儿典型霍奇金淋巴瘤的中期反应
目的:利用正电子发射计算机断层扫描(PET-CT)对典型霍奇金淋巴瘤(cHL)进行反应评估是资源丰富地区的标准治疗方法,但在大多数非洲国家却无法实现。我们旨在研究南非 17 个中心的 cHL 儿童患者在中期分析时 PET-CT 结果的变化与血液检测结果变化之间的相关性:方法:在对 84 名儿童 cHL 患者进行两个周期的多柔比星、博来霉素、长春新碱和达卡巴嗪治疗后,将铁蛋白、乳酸脱氢酶 (LDH)、红细胞沉降率 (ESR)、白蛋白、白细胞总数 (TWC)、淋巴细胞绝对计数 (ALC) 和嗜酸性粒细胞绝对计数的变化与 PET-CT 多维尔评分 (DS) 进行比较。DS 1-3 表示快速早期反应(RER),DS 4-5 表示缓慢早期反应(SER)。缺失值采用 k 最近邻算法进行归类。基线和随访血液测试值合并为一个差值变量。数据被分成训练集和测试集,使用 Python scikit-learn 1.2.2 和逻辑回归、随机森林、奈夫贝叶斯和支持向量机分类器进行分析:在预测血液样本中的 RER 或 SER 时,随机森林分析取得了 73% 的最佳验证测试准确率。当应用于完整数据集时,最佳模型的预测准确率为 80%,接受者操作特征 AUC 为 89%。最具预测性的变量是 ALC 的差异,对模型的贡献率为 21%。铁蛋白、LDH 和 TWC 的差异占 15%-16%。血沉、血红蛋白和白蛋白的差异占 11%-12%:结论:低成本、可广泛使用的血液检测项目的变化可预测未接受 PET-CT 治疗的小儿 cHL 的化疗敏感性,从而识别出可能不需要放疗的患者。这些非特异性血液检测指标的变化应结合临床结果和现有影像学资料进行评估,以避免治疗不当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCO Global Oncology
JCO Global Oncology Medicine-Oncology
CiteScore
6.70
自引率
6.70%
发文量
310
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信