{"title":"Ro5-4864, a translocator protein ligand, regulates T cell-mediated inflammatory responses in skin.","authors":"Yuka Sendai, Kazuyoshi Takeda, Keisuke Ohta, Susumu Nakae, Kyotaro Koshika, Kei Kitamura, Makoto Higuchi, Tatsuya Ichinohe, Toshifumi Azuma, Ko Okumura, Tatsukuni Ohno","doi":"10.1093/intimm/dxae065","DOIUrl":null,"url":null,"abstract":"<p><p>Translocator protein (TSPO) is a mitochondrial outer membrane protein expressed on a variety of immune cells, including macrophages, dendritic cells, and T cells, in addition to neurons and steroid-producing cells. Previous studies of TSPO ligands have suggested that TSPO is involved in multiple cellular functions, including steroidogenesis, immunomodulation, and cell proliferation. Currently, there are limited reports on the effects of TSPO or TSPO ligands on T cell-mediated immune responses. We here investigated the involvement of TSPO/TSPO ligand in T cell responses using a 2,4-dinitro-1-fluorobenzene (DNFB)-induced contact hypersensitivity (CH) model. Treatment with Ro5-4864, a TSPO ligand, during DNFB sensitization reduced the number and activation status of CD4+ and CD8+ T cells in draining lymph nodes and alleviated skin inflammation after DNFB challenge. Adoptive transfer of Ro5-4864-treated mouse-derived DNFB-sensitized T cells to naïve mice inhibited CH responses after DNFB challenge. Ro5-4864-treated sensitized T cells showed lower proliferative responses when stimulated with DNFB-pulsed antigen-presenting cells compared to control-treated sensitized T cells. Ro5-4864 also suppressed cell proliferation, as well as adenosine triphosphate and lactate production, during T cell activation. Moreover, the inhibitory effects of Ro5-4864 on T cell responses were conserved in TSPO-deficient cells. Our results suggest that Ro5-4864 inhibits CH responses by suppressing energy metabolism, at least via glycolysis, to reduce the T cell primary response in a TSPO-independent manner.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxae065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Translocator protein (TSPO) is a mitochondrial outer membrane protein expressed on a variety of immune cells, including macrophages, dendritic cells, and T cells, in addition to neurons and steroid-producing cells. Previous studies of TSPO ligands have suggested that TSPO is involved in multiple cellular functions, including steroidogenesis, immunomodulation, and cell proliferation. Currently, there are limited reports on the effects of TSPO or TSPO ligands on T cell-mediated immune responses. We here investigated the involvement of TSPO/TSPO ligand in T cell responses using a 2,4-dinitro-1-fluorobenzene (DNFB)-induced contact hypersensitivity (CH) model. Treatment with Ro5-4864, a TSPO ligand, during DNFB sensitization reduced the number and activation status of CD4+ and CD8+ T cells in draining lymph nodes and alleviated skin inflammation after DNFB challenge. Adoptive transfer of Ro5-4864-treated mouse-derived DNFB-sensitized T cells to naïve mice inhibited CH responses after DNFB challenge. Ro5-4864-treated sensitized T cells showed lower proliferative responses when stimulated with DNFB-pulsed antigen-presenting cells compared to control-treated sensitized T cells. Ro5-4864 also suppressed cell proliferation, as well as adenosine triphosphate and lactate production, during T cell activation. Moreover, the inhibitory effects of Ro5-4864 on T cell responses were conserved in TSPO-deficient cells. Our results suggest that Ro5-4864 inhibits CH responses by suppressing energy metabolism, at least via glycolysis, to reduce the T cell primary response in a TSPO-independent manner.
期刊介绍:
International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.