Hailin Li, Di Dong, Mengjie Fang, Bingxi He, Shengyuan Liu, Chaoen Hu, Zaiyi Liu, Hexiang Wang, Linglong Tang, Jie Tian
{"title":"ContraSurv: Enhancing Prognostic Assessment of Medical Images via Data-Efficient Weakly Supervised Contrastive Learning.","authors":"Hailin Li, Di Dong, Mengjie Fang, Bingxi He, Shengyuan Liu, Chaoen Hu, Zaiyi Liu, Hexiang Wang, Linglong Tang, Jie Tian","doi":"10.1109/JBHI.2024.3484991","DOIUrl":null,"url":null,"abstract":"<p><p>Prognostic assessment remains a critical challenge in medical research, often limited by the lack of well-labeled data. In this work, we introduce ContraSurv, a weakly-supervised learning framework based on contrastive learning, designed to enhance prognostic predictions in 3D medical images. ContraSurv utilizes both the self-supervised information inherent in unlabeled data and the weakly-supervised cues present in censored data, refining its capacity to extract prognostic representations. For this purpose, we establish a Vision Transformer architecture optimized for our medical image datasets and introduce novel methodologies for both self-supervised and supervised contrastive learning for prognostic assessment. Additionally, we propose a specialized supervised contrastive loss function and introduce SurvMix, a novel data augmentation technique for survival analysis. Evaluations were conducted across three cancer types and two imaging modalities on three real-world datasets. The results confirmed the enhanced performance of ContraSurv over competing methods, particularly in data with a high censoring rate.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3484991","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Prognostic assessment remains a critical challenge in medical research, often limited by the lack of well-labeled data. In this work, we introduce ContraSurv, a weakly-supervised learning framework based on contrastive learning, designed to enhance prognostic predictions in 3D medical images. ContraSurv utilizes both the self-supervised information inherent in unlabeled data and the weakly-supervised cues present in censored data, refining its capacity to extract prognostic representations. For this purpose, we establish a Vision Transformer architecture optimized for our medical image datasets and introduce novel methodologies for both self-supervised and supervised contrastive learning for prognostic assessment. Additionally, we propose a specialized supervised contrastive loss function and introduce SurvMix, a novel data augmentation technique for survival analysis. Evaluations were conducted across three cancer types and two imaging modalities on three real-world datasets. The results confirmed the enhanced performance of ContraSurv over competing methods, particularly in data with a high censoring rate.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.