Estimating Causal Effects on a Disease Progression Trait Using Bivariate Mendelian Randomisation

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY
Siyang Cai, Frank Dudbridge
{"title":"Estimating Causal Effects on a Disease Progression Trait Using Bivariate Mendelian Randomisation","authors":"Siyang Cai,&nbsp;Frank Dudbridge","doi":"10.1002/gepi.22600","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) have provided large numbers of genetic markers that can be used as instrumental variables in a Mendelian Randomisation (MR) analysis to assess the causal effect of a risk factor on an outcome. An extension of MR analysis, multivariable MR, has been proposed to handle multiple risk factors. However, adjusting or stratifying the outcome on a variable that is associated with it may induce collider bias. For an outcome that represents progression of a disease, conditioning by selecting only the cases may cause a biased MR estimation of the causal effect of the risk factor of interest on the progression outcome. Recently, we developed instrument effect regression and corrected weighted least squares (CWLS) to adjust for collider bias in observational associations. In this paper, we highlight the importance of adjusting for collider bias in MR with a risk factor of interest and disease progression as the outcome. A generalised version of the instrument effect regression and CWLS adjustment is proposed based on a multivariable MR model. We highlight the assumptions required for this approach and demonstrate its utility for bias reduction. We give an illustrative application to the effect of smoking initiation and smoking cessation on Crohn's disease prognosis, finding no evidence to support a causal effect.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22600","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWAS) have provided large numbers of genetic markers that can be used as instrumental variables in a Mendelian Randomisation (MR) analysis to assess the causal effect of a risk factor on an outcome. An extension of MR analysis, multivariable MR, has been proposed to handle multiple risk factors. However, adjusting or stratifying the outcome on a variable that is associated with it may induce collider bias. For an outcome that represents progression of a disease, conditioning by selecting only the cases may cause a biased MR estimation of the causal effect of the risk factor of interest on the progression outcome. Recently, we developed instrument effect regression and corrected weighted least squares (CWLS) to adjust for collider bias in observational associations. In this paper, we highlight the importance of adjusting for collider bias in MR with a risk factor of interest and disease progression as the outcome. A generalised version of the instrument effect regression and CWLS adjustment is proposed based on a multivariable MR model. We highlight the assumptions required for this approach and demonstrate its utility for bias reduction. We give an illustrative application to the effect of smoking initiation and smoking cessation on Crohn's disease prognosis, finding no evidence to support a causal effect.

Abstract Image

利用双变量孟德尔随机化估算疾病进展性状的因果效应
全基因组关联研究(GWAS)提供了大量的遗传标记,这些标记可用作孟德尔随机(MR)分析中的工具变量,以评估风险因素对结果的因果效应。有人提出了 MR 分析的扩展,即多变量 MR,以处理多个风险因素。然而,根据与结果相关的变量对结果进行调整或分层可能会引起碰撞偏差。对于代表疾病进展的结果,仅选择病例进行调节可能会导致对相关风险因素对疾病进展结果的因果效应的 MR 估计出现偏差。最近,我们开发了工具效应回归和校正加权最小二乘法(CWLS)来调整观察性关联中的碰撞偏差。在本文中,我们强调了在以相关风险因素和疾病进展为结果的 MR 中调整碰撞偏差的重要性。基于多变量 MR 模型,我们提出了工具效应回归和 CWLS 调整的通用版本。我们强调了这一方法所需的假设条件,并展示了其在减少偏差方面的实用性。我们举例说明了吸烟和戒烟对克罗恩病预后的影响,发现没有证据支持因果效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信