Xing Liu, Chi Qu, Chuandong Liu, Na Zhu, Huaqiang Huang, Fei Teng, Caili Huang, Bingying Luo, Xuanzhu Liu, Min Xie, Feng Xi, Mei Li, Liang Wu, Yuxiang Li, Ao Chen, Xun Xu, Sha Liao, Jiajun Zhang
{"title":"StereoSiTE: a framework to spatially and quantitatively profile the cellular neighborhood organized iTME.","authors":"Xing Liu, Chi Qu, Chuandong Liu, Na Zhu, Huaqiang Huang, Fei Teng, Caili Huang, Bingying Luo, Xuanzhu Liu, Min Xie, Feng Xi, Mei Li, Liang Wu, Yuxiang Li, Ao Chen, Xun Xu, Sha Liao, Jiajun Zhang","doi":"10.1093/gigascience/giae078","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spatial transcriptome (ST) technologies are emerging as powerful tools for studying tumor biology. However, existing tools for analyzing ST data are limited, as they mainly rely on algorithms developed for single-cell RNA sequencing data and do not fully utilize the spatial information. While some algorithms have been developed for ST data, they are often designed for specific tasks, lacking a comprehensive analytical framework for leveraging spatial information.</p><p><strong>Results: </strong>In this study, we present StereoSiTE, an analytical framework that combines open-source bioinformatics tools with custom algorithms to accurately infer the functional spatial cell interaction intensity (SCII) within the cellular neighborhood (CN) of interest. We applied StereoSiTE to decode ST datasets from xenograft models and found that the CN efficiently distinguished different cellular contexts, while the SCII analysis provided more precise insights into intercellular interactions by incorporating spatial information. By applying StereoSiTE to multiple samples, we successfully identified a CN region dominated by neutrophils, suggesting their potential role in remodeling the immune tumor microenvironment (iTME) after treatment. Moreover, the SCII analysis within the CN region revealed neutrophil-mediated communication, supported by pathway enrichment, transcription factor regulon activities, and protein-protein interactions.</p><p><strong>Conclusions: </strong>StereoSiTE represents a promising framework for unraveling the mechanisms underlying treatment response within the iTME by leveraging CN-based tissue domain identification and SCII-inferred spatial intercellular interactions. The software is designed to be scalable, modular, and user-friendly, making it accessible to a wide range of researchers.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae078","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Spatial transcriptome (ST) technologies are emerging as powerful tools for studying tumor biology. However, existing tools for analyzing ST data are limited, as they mainly rely on algorithms developed for single-cell RNA sequencing data and do not fully utilize the spatial information. While some algorithms have been developed for ST data, they are often designed for specific tasks, lacking a comprehensive analytical framework for leveraging spatial information.
Results: In this study, we present StereoSiTE, an analytical framework that combines open-source bioinformatics tools with custom algorithms to accurately infer the functional spatial cell interaction intensity (SCII) within the cellular neighborhood (CN) of interest. We applied StereoSiTE to decode ST datasets from xenograft models and found that the CN efficiently distinguished different cellular contexts, while the SCII analysis provided more precise insights into intercellular interactions by incorporating spatial information. By applying StereoSiTE to multiple samples, we successfully identified a CN region dominated by neutrophils, suggesting their potential role in remodeling the immune tumor microenvironment (iTME) after treatment. Moreover, the SCII analysis within the CN region revealed neutrophil-mediated communication, supported by pathway enrichment, transcription factor regulon activities, and protein-protein interactions.
Conclusions: StereoSiTE represents a promising framework for unraveling the mechanisms underlying treatment response within the iTME by leveraging CN-based tissue domain identification and SCII-inferred spatial intercellular interactions. The software is designed to be scalable, modular, and user-friendly, making it accessible to a wide range of researchers.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.