Prediction of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy using plasma proteomics profiling.

IF 7.9 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Europace Pub Date : 2024-11-01 DOI:10.1093/europace/euae267
Heidi S Lumish, Nina Harano, Lusha W Liang, Kohei Hasegawa, Mathew S Maurer, Albree Tower-Rader, Michael A Fifer, Muredach P Reilly, Yuichi J Shimada
{"title":"Prediction of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy using plasma proteomics profiling.","authors":"Heidi S Lumish, Nina Harano, Lusha W Liang, Kohei Hasegawa, Mathew S Maurer, Albree Tower-Rader, Michael A Fifer, Muredach P Reilly, Yuichi J Shimada","doi":"10.1093/europace/euae267","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Atrial fibrillation (AF) is the most common sustained arrhythmia among patients with hypertrophic cardiomyopathy (HCM), increasing symptom burden and stroke risk. We aimed to construct a plasma proteomics-based model to predict new-onset AF in patients with HCM and determine dysregulated signalling pathways.</p><p><strong>Methods and results: </strong>In this prospective, multi-centre cohort study, we conducted plasma proteomics profiling of 4986 proteins at enrolment. We developed a proteomics-based machine learning model to predict new-onset AF using samples from one institution (training set) and tested its predictive ability using independent samples from another institution (test set). We performed a survival analysis to compare the risk of new-onset AF among high- and low-risk groups in the test set. We performed pathway analysis of proteins significantly (univariable P < 0.05) associated with new-onset AF using a false discovery rate (FDR) threshold of 0.001. The study included 284 patients with HCM (training set: 193, test set: 91). Thirty-seven (13%) patients developed AF during median follow-up of 3.2 years [25-75 percentile: 1.8-5.2]. Using the proteomics-based prediction model developed in the training set, the area under the receiver operating characteristic curve was 0.89 (95% confidence interval 0.78-0.99) in the test set. In the test set, patients categorized as high risk had a higher rate of developing new-onset AF (log-rank P = 0.002). The Ras-MAPK pathway was dysregulated in patients who developed incident AF during follow-up (FDR < 1.0 × 10-6).</p><p><strong>Conclusion: </strong>This is the first study to demonstrate the ability of plasma proteomics to predict new-onset AF in HCM and identify dysregulated signalling pathways.</p>","PeriodicalId":11981,"journal":{"name":"Europace","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542585/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europace","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/europace/euae267","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Atrial fibrillation (AF) is the most common sustained arrhythmia among patients with hypertrophic cardiomyopathy (HCM), increasing symptom burden and stroke risk. We aimed to construct a plasma proteomics-based model to predict new-onset AF in patients with HCM and determine dysregulated signalling pathways.

Methods and results: In this prospective, multi-centre cohort study, we conducted plasma proteomics profiling of 4986 proteins at enrolment. We developed a proteomics-based machine learning model to predict new-onset AF using samples from one institution (training set) and tested its predictive ability using independent samples from another institution (test set). We performed a survival analysis to compare the risk of new-onset AF among high- and low-risk groups in the test set. We performed pathway analysis of proteins significantly (univariable P < 0.05) associated with new-onset AF using a false discovery rate (FDR) threshold of 0.001. The study included 284 patients with HCM (training set: 193, test set: 91). Thirty-seven (13%) patients developed AF during median follow-up of 3.2 years [25-75 percentile: 1.8-5.2]. Using the proteomics-based prediction model developed in the training set, the area under the receiver operating characteristic curve was 0.89 (95% confidence interval 0.78-0.99) in the test set. In the test set, patients categorized as high risk had a higher rate of developing new-onset AF (log-rank P = 0.002). The Ras-MAPK pathway was dysregulated in patients who developed incident AF during follow-up (FDR < 1.0 × 10-6).

Conclusion: This is the first study to demonstrate the ability of plasma proteomics to predict new-onset AF in HCM and identify dysregulated signalling pathways.

利用血浆蛋白质组学分析预测肥厚型心肌病患者的新发心房颤动
背景和目的:心房颤动(AF)是肥厚型心肌病(HCM)患者中最常见的持续性心律失常,会增加症状负担和中风风险。我们旨在构建一个基于血浆蛋白质组学的模型,以预测肥厚型心肌病患者新发房颤,并确定失调的信号通路:在这项前瞻性、多中心队列研究中,我们在入组时对 4,986 个蛋白质进行了血浆蛋白质组学分析。我们开发了一个基于蛋白质组学的机器学习(ML)模型,利用一家机构的样本(训练集)预测新发房颤,并利用另一家机构的独立样本(测试集)测试其预测能力。我们进行了生存分析,以比较测试集中高风险组和低风险组之间新发房颤的风险。我们对显著蛋白质(单变量 pResults)进行了通路分析:研究共纳入 284 名 HCM 患者(训练集:193 人,测试集:91 人)。37例(13%)患者在中位随访3.2年[25-75百分位数:1.8-5.2]期间出现房颤。使用在训练集中开发的基于蛋白质组学的预测模型,测试集中的受体运算特征曲线下面积(AUC)为 0.89(95% 置信区间为 0.78-0.99)。在测试集中,被归类为高风险的患者发生新发房颤的比例更高(对数秩 P=0.002)。Ras-MAPK通路在随访期间发展为偶发房颤的患者中出现失调(FDRC结论:这是第一项证明血浆蛋白质组学能够预测 HCM 中新发房颤并识别失调信号通路的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Europace
Europace 医学-心血管系统
CiteScore
10.30
自引率
8.20%
发文量
851
审稿时长
3-6 weeks
期刊介绍: EP - Europace - European Journal of Pacing, Arrhythmias and Cardiac Electrophysiology of the European Heart Rhythm Association of the European Society of Cardiology. The journal aims to provide an avenue of communication of top quality European and international original scientific work and reviews in the fields of Arrhythmias, Pacing and Cellular Electrophysiology. The Journal offers the reader a collection of contemporary original peer-reviewed papers, invited papers and editorial comments together with book reviews and correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信