Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach","authors":"","doi":"10.1016/j.cmpb.2024.108469","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of transcatheter aortic valves.</div></div><div><h3>Methods</h3><div>An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the ANSYS LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29 mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via ANSYS EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment.</div></div><div><h3>Results</h3><div>Simulated effective orifice areas for commercial valves were in reported ranges. In silico cardiac output and flow rate during the positive pressure differential period matched experimental results by approximately 93 %. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics, where platelets experienced instantaneous stresses reaching around 10 Pa. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk with the highest median SA around 70 dyn·s/cm<sup>2</sup> - nearly double the activation threshold - despite those being clinically classified as “mild” paravalvular leaks.</div></div><div><h3>Conclusions</h3><div>Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004620","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective

Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of transcatheter aortic valves.

Methods

An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the ANSYS LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29 mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via ANSYS EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment.

Results

Simulated effective orifice areas for commercial valves were in reported ranges. In silico cardiac output and flow rate during the positive pressure differential period matched experimental results by approximately 93 %. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics, where platelets experienced instantaneous stresses reaching around 10 Pa. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk with the highest median SA around 70 dyn·s/cm2 - nearly double the activation threshold - despite those being clinically classified as “mild” paravalvular leaks.

Conclusions

Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.
采用流体-结构相互作用方法评估经导管人工心脏瓣膜的血栓形成风险。
背景和目的:在过去十年中,TAVR 等人工心脏瓣膜介入手术的数量激增,但与之相关的长期、危及生命的血栓事件并发症继续影响着患者的治疗效果。因此,改进 TAVR 设备的血栓形成风险分析至关重要。血栓形成的体外研究通常很难进行。然而,修订后的 ISO 测试标准包括心血管植入物血栓形成风险评估的计算测试。我们介绍了一种用于评估经导管主动脉瓣血栓形成风险的流体-结构相互作用(FSI)方法:方法:通过 ANSYS LS-DYNA 软件的不可压缩计算流体动力学多物理场求解器实施 FSI 框架。通过将台式测试得出的 29 毫米 CoreValve 装置的流速和文献中商用 TAVR 瓣膜的孔面积与硅学结果进行比较,验证了流动分析的数值建模方法。通过 ANSYS EnSight 计算流场中虚拟血小板的应力累积 (SA),分析血栓形成风险。综合 FSI-血栓形成方法随后被用于通过两种方法检查 TAVR 设备的血液动力学和血栓形成风险:结果:结果:商用瓣膜的模拟有效孔面积在报告范围内。正压差期间的硅学心输出量和流速与实验结果吻合约 93%。该方法被用于分析各种 TAVR 瓣膜设计对血液动力学的影响,其中血小板经历的瞬时应力达到 10 Pa 左右。在患者特定的双尖瓣主动脉瓣解剖中,TAVR 部署后的血液动力学显示了不同程度的血栓形成风险,最高的中位 SA 约为 70 达因-秒/平方厘米,几乎是激活阈值的两倍,尽管这些临床分类为 "轻度 "瓣下漏:我们的方法可用于提高人工瓣膜从初始设计阶段到临床应用的抗血栓能力。它可以对设备进行无与伦比的优化,发现关键的 TAVR 瓣叶设计参数,这些参数可用于降低血栓形成风险,此外还可以建立患者特异性模型来评估设备性能。这项工作展示了先进的 TAVR 设备硅学分析的实用性,可用于其他血液再循环设备的血栓形成风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信