Within-chain parallelization-Giving Stan Jet Fuel for population modeling in pharmacometrics.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Casey Davis, Pavan Vaddady
{"title":"Within-chain parallelization-Giving Stan Jet Fuel for population modeling in pharmacometrics.","authors":"Casey Davis, Pavan Vaddady","doi":"10.1002/psp4.13238","DOIUrl":null,"url":null,"abstract":"<p><p>Stan is a powerful probabilistic programming language designed mainly for Bayesian data analysis. Torsten is a collection of Stan functions that handles the events (e.g., dosing events) and solves the ODE systems that are frequently present in pharmacometric models. To perform a Bayesian data analysis, most models in pharmacometrics require Markov Chain Monte Carlo (MCMC) methods to sample from the posterior distribution. However, MCMC is computationally expensive and can be time-consuming, enough so that people will often forgo Bayesian methods for a more traditional approach. This paper shows how to speed up the sampling process in Stan by within-chain parallelization through both multi-threading using Stan's reduce_sum() function and multi-processing using Torsten's group ODE solver. Both methods show substantial reductions in the time necessary to sufficiently sample from the posterior distribution compared with a basic approach with no within-chain parallelization.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13238","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Stan is a powerful probabilistic programming language designed mainly for Bayesian data analysis. Torsten is a collection of Stan functions that handles the events (e.g., dosing events) and solves the ODE systems that are frequently present in pharmacometric models. To perform a Bayesian data analysis, most models in pharmacometrics require Markov Chain Monte Carlo (MCMC) methods to sample from the posterior distribution. However, MCMC is computationally expensive and can be time-consuming, enough so that people will often forgo Bayesian methods for a more traditional approach. This paper shows how to speed up the sampling process in Stan by within-chain parallelization through both multi-threading using Stan's reduce_sum() function and multi-processing using Torsten's group ODE solver. Both methods show substantial reductions in the time necessary to sufficiently sample from the posterior distribution compared with a basic approach with no within-chain parallelization.

链内并行化--为药物计量学中的群体建模提供斯坦喷气燃料。
Stan 是一种功能强大的概率编程语言,主要用于贝叶斯数据分析。Torsten 是一组 Stan 函数,用于处理事件(如用药事件)和解决药物计量学模型中经常出现的 ODE 系统。要进行贝叶斯数据分析,药物计量学中的大多数模型都需要用马尔可夫链蒙特卡罗(MCMC)方法从后验分布中采样。然而,MCMC 的计算成本很高,而且非常耗时,因此人们往往会放弃贝叶斯方法,转而采用更传统的方法。本文展示了如何通过使用 Stan 的 reduce_sum() 函数进行多线程处理和使用 Torsten 的组 ODE 求解器进行多进程处理,在 Stan 中通过链内并行化加速采样过程。与没有链内并行化的基本方法相比,这两种方法都显示出从后验分布中充分采样所需的时间大幅减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信