{"title":"Odoratin balances ROS/NO through EZH2/PPARγ signalling to improve myocardial fibrosis","authors":"Bin Rao, Min Zhang, Min Liu, Yan Tu","doi":"10.1111/1440-1681.70002","DOIUrl":null,"url":null,"abstract":"<p>Myocardial fibrosis is a critical concern in clinical medicine. This study explores the potential of odoratin as a treatment for myocardial fibrosis and investigates its underlying mechanisms. In vitro experiments involved stimulating primary mouse cardiomyocytes with TGF-β1, followed by odoratin treatment, to assess levels of reactive oxygen species (ROS) and nitric oxide (NO). In vivo, a mouse model of myocardial fibrosis was established using abdominal aortic constriction (AAC) and treated with odoratin. ROS and NO levels in myocardial tissue were then evaluated. Immunofluorescence and Western blotting analysis showed that odoratin reduced excess ROS, enhanced NO production and decreased fibrosis-related protein expression in vitro. In vivo, odoratin significantly improved cardiac function, reduced ROS, increased NO levels and mitigated fibrosis in AAC-induced mice. Both in vitro and in vivo, odoratin inhibited the expression of NADPH oxidase 4 and EZH2, while promoting the expression of phosphorylated endothelial nitric oxide synthase (p-eNOS) and PPARγ. The anti-fibrotic effects of odoratin were reversed by PPARγ antagonism, and EZH2 overexpression diminished PPARγ activation by odoratin. These findings suggest that odoratin may combat myocardial fibrosis by balancing ROS and NO through PPARγ activation, with EZH2 inhibition likely playing a key regulatory role.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial fibrosis is a critical concern in clinical medicine. This study explores the potential of odoratin as a treatment for myocardial fibrosis and investigates its underlying mechanisms. In vitro experiments involved stimulating primary mouse cardiomyocytes with TGF-β1, followed by odoratin treatment, to assess levels of reactive oxygen species (ROS) and nitric oxide (NO). In vivo, a mouse model of myocardial fibrosis was established using abdominal aortic constriction (AAC) and treated with odoratin. ROS and NO levels in myocardial tissue were then evaluated. Immunofluorescence and Western blotting analysis showed that odoratin reduced excess ROS, enhanced NO production and decreased fibrosis-related protein expression in vitro. In vivo, odoratin significantly improved cardiac function, reduced ROS, increased NO levels and mitigated fibrosis in AAC-induced mice. Both in vitro and in vivo, odoratin inhibited the expression of NADPH oxidase 4 and EZH2, while promoting the expression of phosphorylated endothelial nitric oxide synthase (p-eNOS) and PPARγ. The anti-fibrotic effects of odoratin were reversed by PPARγ antagonism, and EZH2 overexpression diminished PPARγ activation by odoratin. These findings suggest that odoratin may combat myocardial fibrosis by balancing ROS and NO through PPARγ activation, with EZH2 inhibition likely playing a key regulatory role.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.