{"title":"CAR-Macrophage Therapy Alleviates Myocardial Ischemia-Reperfusion Injury.","authors":"Jiawan Wang, Heng Du, Wanrun Xie, Jinmiao Bi, Hao Zhang, Xu Liu, Yuhan Wang, Shaolong Zhang, Anhua Lei, Chuting He, Hailong Yuan, Jiahe Zhang, Yujing Li, Pengfei Xu, Siqi Liu, Yanan Zhou, Jianghua Shen, Jingdong Wu, Yihong Cai, Chaofan Yang, Zeya Li, Yingxin Liang, Yang Zhao, Jin Zhang, Moshi Song","doi":"10.1161/CIRCRESAHA.124.325212","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Given the growing acknowledgment of the detrimental effects of excessive myocardial fibrosis on pathological remodeling after myocardial ischemia-reperfusion injury (I/R), targeting the modulation of myocardial fibrosis may offer protective and therapeutic advantages. However, effective clinical interventions and therapies that target myocardial fibrosis remain limited. As a promising chimeric antigen receptor (CAR) cell therapy, whether CAR macrophages (CAR-Ms) can be used to treat I/R remains unclear.</p><p><strong>Methods: </strong>The expression of FAP (fibroblast activation protein) was studied in mouse hearts after I/R. FAP CAR-Ms were generated to target FAP-expressing cardiac fibroblasts in mouse hearts after I/R. The phagocytosis activity of FAP CAR-Ms was tested in vitro. The efficacy and safety of FAP CAR-Ms in treating I/R were evaluated in vivo.</p><p><strong>Results: </strong>FAP was significantly upregulated in activated cardiac fibroblasts as early as 3 days after I/R. Upon demonstrating their ability to engulf FAP-overexpressing fibroblasts, we intravenously administered FAP CAR-Ms to mice at 3 days after I/R and found that FAP CAR-Ms significantly improved cardiac function and reduced myocardial fibrosis in mice after I/R. No toxicities associated with FAP CAR-Ms were detected in the heart or other organs at 2 weeks after I/R. Finally, we found that FAP CAR-Ms conferred long-term cardioprotection against I/R.</p><p><strong>Conclusions: </strong>Our proof-of-concept study demonstrates the therapeutic potential of FAP CAR-Ms in alleviating myocardial I/R and potentially opens new avenues for the treatment of a range of heart diseases that include a fibrotic phenotype.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325212","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Given the growing acknowledgment of the detrimental effects of excessive myocardial fibrosis on pathological remodeling after myocardial ischemia-reperfusion injury (I/R), targeting the modulation of myocardial fibrosis may offer protective and therapeutic advantages. However, effective clinical interventions and therapies that target myocardial fibrosis remain limited. As a promising chimeric antigen receptor (CAR) cell therapy, whether CAR macrophages (CAR-Ms) can be used to treat I/R remains unclear.
Methods: The expression of FAP (fibroblast activation protein) was studied in mouse hearts after I/R. FAP CAR-Ms were generated to target FAP-expressing cardiac fibroblasts in mouse hearts after I/R. The phagocytosis activity of FAP CAR-Ms was tested in vitro. The efficacy and safety of FAP CAR-Ms in treating I/R were evaluated in vivo.
Results: FAP was significantly upregulated in activated cardiac fibroblasts as early as 3 days after I/R. Upon demonstrating their ability to engulf FAP-overexpressing fibroblasts, we intravenously administered FAP CAR-Ms to mice at 3 days after I/R and found that FAP CAR-Ms significantly improved cardiac function and reduced myocardial fibrosis in mice after I/R. No toxicities associated with FAP CAR-Ms were detected in the heart or other organs at 2 weeks after I/R. Finally, we found that FAP CAR-Ms conferred long-term cardioprotection against I/R.
Conclusions: Our proof-of-concept study demonstrates the therapeutic potential of FAP CAR-Ms in alleviating myocardial I/R and potentially opens new avenues for the treatment of a range of heart diseases that include a fibrotic phenotype.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.