{"title":"A dual-STING-activating nanosystem expands cancer immunotherapeutic temporal window.","authors":"Jian Wang, Xiaohu Wang, Qingqing Xiong, Shan Gao, Shihao Wang, Siqi Zhu, Shuting Xiang, Mingxi Li, Haitang Xie, Suxin Li","doi":"10.1016/j.xcrm.2024.101797","DOIUrl":null,"url":null,"abstract":"<p><p>Stimulator of interferon genes (STING) is a promising antitumor target via bridging innate and adaptive immunity, yet the transient nature of immune signal transduction renders small-molecule agonists susceptible to short time effectiveness. Here, we report a dual-STING-activating micelle system (D-SAM) to dynamically program STING kinetics. Mechanistically, the natural ligand cGAMP encapsulated in D-SAM initiates STING signaling, while the pH-sensitive polymeric agonist PC7A disassembled from micelle shell buffers lysosomal protons and retards STING degradation. This prolonged STING activity facilitates dendritic cell (DC) antigen presentation and extends cytotoxic T lymphocyte priming. D-SAM improves efficacy over single soluble or delivered agonists against established, metastatic, and recurring murine tumors. Specific depletion of STING in DCs or blockade of CD8<sup>+</sup> T cell infiltration abrogates therapeutic effects. The feasibility of immune modulation is further validated in resected human patient tissues. This work underscores the temporal rhythm of STING as crucial for mounting a potent and enduring antitumor immune response.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101797"},"PeriodicalIF":11.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101797","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stimulator of interferon genes (STING) is a promising antitumor target via bridging innate and adaptive immunity, yet the transient nature of immune signal transduction renders small-molecule agonists susceptible to short time effectiveness. Here, we report a dual-STING-activating micelle system (D-SAM) to dynamically program STING kinetics. Mechanistically, the natural ligand cGAMP encapsulated in D-SAM initiates STING signaling, while the pH-sensitive polymeric agonist PC7A disassembled from micelle shell buffers lysosomal protons and retards STING degradation. This prolonged STING activity facilitates dendritic cell (DC) antigen presentation and extends cytotoxic T lymphocyte priming. D-SAM improves efficacy over single soluble or delivered agonists against established, metastatic, and recurring murine tumors. Specific depletion of STING in DCs or blockade of CD8+ T cell infiltration abrogates therapeutic effects. The feasibility of immune modulation is further validated in resected human patient tissues. This work underscores the temporal rhythm of STING as crucial for mounting a potent and enduring antitumor immune response.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.