Ana Toledano-Zaragoza, Violeta Enriquez-Zarralanga, Sara Naya-Forcano, Víctor Briz, Rocío Alfaro-Ruíz, Miguel Parra-Martínez, Daniel N Mitroi, Rafael Luján, José A Esteban, María Dolores Ledesma
{"title":"Enhanced mGluR<sub>5</sub> intracellular activity causes psychiatric alterations in Niemann Pick type C disease.","authors":"Ana Toledano-Zaragoza, Violeta Enriquez-Zarralanga, Sara Naya-Forcano, Víctor Briz, Rocío Alfaro-Ruíz, Miguel Parra-Martínez, Daniel N Mitroi, Rafael Luján, José A Esteban, María Dolores Ledesma","doi":"10.1038/s41419-024-07158-8","DOIUrl":null,"url":null,"abstract":"<p><p>Niemann-Pick disease Type C (NPC) is caused by mutations in the cholesterol transport protein NPC1 leading to the endolysosomal accumulation of the lipid and to psychiatric alterations. Using an NPC mouse model (Npc1<sup>nmf164</sup>) we show aberrant mGluR<sub>5</sub> lysosomal accumulation and reduction at plasma membrane in NPC1 deficient neurons. This phenotype was induced in wild-type (wt) neurons by genetic and pharmacological NPC1 silencing. Extraction of cholesterol normalized mGluR<sub>5</sub> distribution in NPC1-deficient neurons. Intracellular accumulation of mGluR<sub>5</sub> was functionally active leading to enhanced mGluR-dependent long-term depression (mGluR-LTD) in Npc1<sup>nmf164</sup> hippocampal slices. mGluR-LTD was lower or higher in Npc1<sup>nmf164</sup> slices compared with wt when stimulated with non-membrane-permeable or membrane-permeable mGluR<sub>5</sub> agonists, respectively. Oral treatment with the mGluR<sub>5</sub> antagonist 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP) reduced mGluR-LTD and ameliorated psychiatric anomalies in the Npc1<sup>nmf164</sup> mice. Increased neuronal mGluR<sub>5</sub> levels were found in an NPC patient. These results implicate mGluR<sub>5</sub> alterations in NPC psychiatric condition and provide a new therapeutic strategy that might help patients suffering from this devastating disease.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07158-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Niemann-Pick disease Type C (NPC) is caused by mutations in the cholesterol transport protein NPC1 leading to the endolysosomal accumulation of the lipid and to psychiatric alterations. Using an NPC mouse model (Npc1nmf164) we show aberrant mGluR5 lysosomal accumulation and reduction at plasma membrane in NPC1 deficient neurons. This phenotype was induced in wild-type (wt) neurons by genetic and pharmacological NPC1 silencing. Extraction of cholesterol normalized mGluR5 distribution in NPC1-deficient neurons. Intracellular accumulation of mGluR5 was functionally active leading to enhanced mGluR-dependent long-term depression (mGluR-LTD) in Npc1nmf164 hippocampal slices. mGluR-LTD was lower or higher in Npc1nmf164 slices compared with wt when stimulated with non-membrane-permeable or membrane-permeable mGluR5 agonists, respectively. Oral treatment with the mGluR5 antagonist 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP) reduced mGluR-LTD and ameliorated psychiatric anomalies in the Npc1nmf164 mice. Increased neuronal mGluR5 levels were found in an NPC patient. These results implicate mGluR5 alterations in NPC psychiatric condition and provide a new therapeutic strategy that might help patients suffering from this devastating disease.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism