{"title":"Slow dissociation kinetics of fentanyls and nitazenes correlates with reduced sensitivity to naloxone reversal at the μ-opioid receptor.","authors":"Norah Alhosan, Damiana Cavallo, Marina Santiago, Eamonn Kelly, Graeme Henderson","doi":"10.1111/bph.17376","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Fentanyls and nitazenes are μ-opioid receptor agonists responsible for a large number of opioid overdose deaths. Here, we determined the potency, dissociation kinetics and antagonism by naloxone at the μ receptor of several fentanyl and nitazene analogues, compared to morphine and DAMGO.</p><p><strong>Experimental approach: </strong>In vitro assays of G protein activation and signalling and arrestin recruitment were performed. AtT20 cells expressing μ receptors were loaded with a membrane potential dye and changes in fluorescence used to determine agonist potency, dissociation kinetics and susceptibility to antagonism by naloxone. BRET experiments were undertaken in HEK293T cells expressing μ receptors to assess Gi protein activation and β-arrestin 2 recruitment.</p><p><strong>Key results: </strong>The apparent rate of agonist dissociation from the μ receptor varied: morphine, DAMGO, alfentanil and fentanyl dissociated rapidly, whereas isotonitazene, etonitazene, ohmefentanyl and carfentanil dissociated slowly. Slowly dissociating agonists were more resistant to antagonism by naloxone. For carfentanil, the slow apparent rate of dissociation was not because of G protein receptor kinase-mediated arrestin recruitment as its apparent rate of dissociation was not increased by inhibition of G protein-coupled receptor kinases (GRKs) with Compound 101. The in vitro relative potencies of fentanyls and nitazenes compared to morphine were much lower than that previously observed in in vivo experiments.</p><p><strong>Conclusions and implications: </strong>With fentanyls and nitazenes that slowly dissociate from the μ receptor, antagonism by naloxone is pseudo-competitive. In overdoses involving fentanyls and nitazenes, higher doses of naloxone may be required for reversal than those normally used to reverse heroin overdose.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.17376","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Fentanyls and nitazenes are μ-opioid receptor agonists responsible for a large number of opioid overdose deaths. Here, we determined the potency, dissociation kinetics and antagonism by naloxone at the μ receptor of several fentanyl and nitazene analogues, compared to morphine and DAMGO.
Experimental approach: In vitro assays of G protein activation and signalling and arrestin recruitment were performed. AtT20 cells expressing μ receptors were loaded with a membrane potential dye and changes in fluorescence used to determine agonist potency, dissociation kinetics and susceptibility to antagonism by naloxone. BRET experiments were undertaken in HEK293T cells expressing μ receptors to assess Gi protein activation and β-arrestin 2 recruitment.
Key results: The apparent rate of agonist dissociation from the μ receptor varied: morphine, DAMGO, alfentanil and fentanyl dissociated rapidly, whereas isotonitazene, etonitazene, ohmefentanyl and carfentanil dissociated slowly. Slowly dissociating agonists were more resistant to antagonism by naloxone. For carfentanil, the slow apparent rate of dissociation was not because of G protein receptor kinase-mediated arrestin recruitment as its apparent rate of dissociation was not increased by inhibition of G protein-coupled receptor kinases (GRKs) with Compound 101. The in vitro relative potencies of fentanyls and nitazenes compared to morphine were much lower than that previously observed in in vivo experiments.
Conclusions and implications: With fentanyls and nitazenes that slowly dissociate from the μ receptor, antagonism by naloxone is pseudo-competitive. In overdoses involving fentanyls and nitazenes, higher doses of naloxone may be required for reversal than those normally used to reverse heroin overdose.
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.