{"title":"Structure-preserved integration of scRNA-seq data using heterogeneous graph neural network.","authors":"Xun Zhang, Kun Qian, Hongwei Li","doi":"10.1093/bib/bbae538","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of single-cell RNA sequencing (scRNA-seq) data from multiple experimental batches enables more comprehensive characterizations of cell states. Given that existing methods disregard the structural information between cells and genes, we proposed a structure-preserved scRNA-seq data integration approach using heterogeneous graph neural network (scHetG). By establishing a heterogeneous graph that represents the interactions between multiple batches of cells and genes, and combining a heterogeneous graph neural network with contrastive learning, scHetG concurrently obtained cell and gene embeddings with structural information. A comprehensive assessment covering different species, tissues and scales indicated that scHetG is an efficacious method for eliminating batch effects while preserving the structural information of cells and genes, including batch-specific cell types and cell-type specific gene co-expression patterns.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500609/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae538","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of single-cell RNA sequencing (scRNA-seq) data from multiple experimental batches enables more comprehensive characterizations of cell states. Given that existing methods disregard the structural information between cells and genes, we proposed a structure-preserved scRNA-seq data integration approach using heterogeneous graph neural network (scHetG). By establishing a heterogeneous graph that represents the interactions between multiple batches of cells and genes, and combining a heterogeneous graph neural network with contrastive learning, scHetG concurrently obtained cell and gene embeddings with structural information. A comprehensive assessment covering different species, tissues and scales indicated that scHetG is an efficacious method for eliminating batch effects while preserving the structural information of cells and genes, including batch-specific cell types and cell-type specific gene co-expression patterns.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.