Kang An, Chunxia Zhou, Boqiang Tong, Dan Liu, Xiaohan Shan, Xin Zhang, Fuhua Bian
{"title":"Population genetic differentiation and structure of rare plant Anemone shikokiana based on genotyping-by-sequencing (GBS).","authors":"Kang An, Chunxia Zhou, Boqiang Tong, Dan Liu, Xiaohan Shan, Xin Zhang, Fuhua Bian","doi":"10.1186/s12870-024-05705-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anemone shikokiana (Makino) Makino is a perennial herb of the genus Anemone in the family Ranunculaceae. Endemic to the Shandong Peninsula in China and Shikoku Island in Japan, it is a rare and endangered plant with a narrow, disjunct distribution. It is threatened with extinction and is in urgent need of conservation. Evaluating the genetic diversity of species, revealing the population genetic structure and gene flow, and inferring the population history are of great importance for species conservation, especially for rare and endangered plants.</p><p><strong>Results: </strong>In our study, 73 samples from eight wild populations in China were sequenced by Super-GBS, yielding a total of 40.59 G clean reads and 52,231 SNPs. Based on the obtained SNP data set, we evaluated the population genetic diversity, genetic structure, and gene flow of A. shikokiana. A low level of genetic diversity was found (He = 0.1925, Ho = 0.1422). The neighbor-joining (NJ) tree, principal component analysis and ADMIXTURE analysis suggested that these 73 A. shikokiana could be considered as two groups. Pairwise genetic differentiation coefficients (Fst) indicated that genetic differentiation was lower between adjacent populations and higher between geographically separated populations. The gene flow between Kunyu Mountain and Lao Mountain was very low. However, neither of the two regions showed evidence of Isolation by Distance.</p><p><strong>Conclusions: </strong>Here, we revealed the population genetic structure and gene flow of A. shikokiana from the Shandong Peninsula, China. This research provides valuable genetic resources for A. shikokiana and contributes to the scientific and effective conservation of the species.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05705-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Anemone shikokiana (Makino) Makino is a perennial herb of the genus Anemone in the family Ranunculaceae. Endemic to the Shandong Peninsula in China and Shikoku Island in Japan, it is a rare and endangered plant with a narrow, disjunct distribution. It is threatened with extinction and is in urgent need of conservation. Evaluating the genetic diversity of species, revealing the population genetic structure and gene flow, and inferring the population history are of great importance for species conservation, especially for rare and endangered plants.
Results: In our study, 73 samples from eight wild populations in China were sequenced by Super-GBS, yielding a total of 40.59 G clean reads and 52,231 SNPs. Based on the obtained SNP data set, we evaluated the population genetic diversity, genetic structure, and gene flow of A. shikokiana. A low level of genetic diversity was found (He = 0.1925, Ho = 0.1422). The neighbor-joining (NJ) tree, principal component analysis and ADMIXTURE analysis suggested that these 73 A. shikokiana could be considered as two groups. Pairwise genetic differentiation coefficients (Fst) indicated that genetic differentiation was lower between adjacent populations and higher between geographically separated populations. The gene flow between Kunyu Mountain and Lao Mountain was very low. However, neither of the two regions showed evidence of Isolation by Distance.
Conclusions: Here, we revealed the population genetic structure and gene flow of A. shikokiana from the Shandong Peninsula, China. This research provides valuable genetic resources for A. shikokiana and contributes to the scientific and effective conservation of the species.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.