Kyle T Finn, Otto Brede, Nigel C Bennett, Markus Zöttl
{"title":"Ultradian rhythms of activity in a wild subterranean rodent.","authors":"Kyle T Finn, Otto Brede, Nigel C Bennett, Markus Zöttl","doi":"10.1098/rsbl.2024.0401","DOIUrl":null,"url":null,"abstract":"<p><p>Many animals adapt their activity patterns to the best environmental conditions using daily rhythms. African mole-rats are among the mammals that have become models for studying how these rhythms can be entrained by light or temperature in experimental laboratory studies. However, it is unclear whether they exhibit similar circadian rhythms in their natural lightless, subterranean environment. In this study, we used biologging to investigate the activity rhythms of wild, highveld mole-rats. We show that their activity cycle exhibited an ultradian rhythm with a length between 4 and 8 h. On an individual level, mole-rats displayed about five activity bouts per day, occurring at various times during the day and night. On a population level, activity peaked in the afternoon, coinciding with the peak in ambient temperature. Our research suggests that wild subterranean mammals, which experience reduced environmental variation, are unlikely to show clear circadian rhythmicity in activity patterns. Instead, activity periods are distributed over several bouts throughout the day and night, and activity coincides with the peak in daily temperature. We propose that ultradian rhythms in activity may be more common than previously thought and discuss how physiological processes may generate differences in periodicity between laboratory and wild populations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496949/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2024.0401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Many animals adapt their activity patterns to the best environmental conditions using daily rhythms. African mole-rats are among the mammals that have become models for studying how these rhythms can be entrained by light or temperature in experimental laboratory studies. However, it is unclear whether they exhibit similar circadian rhythms in their natural lightless, subterranean environment. In this study, we used biologging to investigate the activity rhythms of wild, highveld mole-rats. We show that their activity cycle exhibited an ultradian rhythm with a length between 4 and 8 h. On an individual level, mole-rats displayed about five activity bouts per day, occurring at various times during the day and night. On a population level, activity peaked in the afternoon, coinciding with the peak in ambient temperature. Our research suggests that wild subterranean mammals, which experience reduced environmental variation, are unlikely to show clear circadian rhythmicity in activity patterns. Instead, activity periods are distributed over several bouts throughout the day and night, and activity coincides with the peak in daily temperature. We propose that ultradian rhythms in activity may be more common than previously thought and discuss how physiological processes may generate differences in periodicity between laboratory and wild populations.