{"title":"An improved AlexNet deep learning method for limb tumor cancer prediction and detection.","authors":"Arunachalam Perumal, Janakiraman Nithiyanantham, Jamuna Nagaraj","doi":"10.1088/2057-1976/ad89c7","DOIUrl":null,"url":null,"abstract":"<p><p>Synovial sarcoma (SS) is a rare cancer that forms in soft tissues around joints, and early detection is crucial for improving patient survival rates. This study introduces a convolutional neural network (CNN) using an improved AlexNet deep learning classifier to improve SS diagnosis from digital pathological images. Key preprocessing steps, such as dataset augmentation and noise reduction techniques, such as adaptive median filtering (AMF) and histogram equalization were employed to improve image quality. Feature extraction was conducted using the Gray-Level Co-occurrence Matrix (GLCM) and Improved Linear Discriminant Analysis (ILDA), while image segmentation targeted spindle-shaped cells using repetitive phase-level set segmentation (RPLSS). The improved AlexNet architecture features additional convolutional layers and resized input images, leading to superior performance. The model demonstrated significant improvements in accuracy, sensitivity, specificity, and AUC, outperforming existing methods by 3%, 1.70%, 6.08%, and 8.86%, respectively, in predicting SS.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad89c7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Synovial sarcoma (SS) is a rare cancer that forms in soft tissues around joints, and early detection is crucial for improving patient survival rates. This study introduces a convolutional neural network (CNN) using an improved AlexNet deep learning classifier to improve SS diagnosis from digital pathological images. Key preprocessing steps, such as dataset augmentation and noise reduction techniques, such as adaptive median filtering (AMF) and histogram equalization were employed to improve image quality. Feature extraction was conducted using the Gray-Level Co-occurrence Matrix (GLCM) and Improved Linear Discriminant Analysis (ILDA), while image segmentation targeted spindle-shaped cells using repetitive phase-level set segmentation (RPLSS). The improved AlexNet architecture features additional convolutional layers and resized input images, leading to superior performance. The model demonstrated significant improvements in accuracy, sensitivity, specificity, and AUC, outperforming existing methods by 3%, 1.70%, 6.08%, and 8.86%, respectively, in predicting SS.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.