Elya Janis Ritenis, Camila S Padilha, Matthew B Cooke, Christos George Stathis, Andrew Philp, Donny M Camera
{"title":"The Acute and Chronic influence of Exercise on Mitochondrial Dynamics in Skeletal Muscle.","authors":"Elya Janis Ritenis, Camila S Padilha, Matthew B Cooke, Christos George Stathis, Andrew Philp, Donny M Camera","doi":"10.1152/ajpendo.00311.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Exercise and nutritional modulation are potent stimuli for eliciting increases in mitochondrial mass and function. Collectively, these beneficial adaptations are increasingly recognized to coincide with improvements to skeletal muscle health. Mitochondrial dynamics of fission and fusion are increasingly implicated as having a central role in mediating aspects of key organelle adaptions that are seen with exercise. Exercise-induced mitochondrial adaptations that dynamics have been implicated in are: 1) Increases to mitochondrial turnover, resulting from elevated rates of mitochondrial synthesis (biogenesis) and degradative (mitophagy) processes. 2) Morphological changes to the 3D tubular network, known as the mitochondrial reticulum, that mitochondria form in skeletal muscle. Notably, mitochondrial fission has also been implicated in coordinating increases in mitophagy, following acute exercise. Further, increased fusion following exercise training promotes increased connectivity of the mitochondrial reticulum and is associated with improved metabolism and mitochondrial function. However, the molecular basis and fashion in which exercise infers beneficial mitochondrial adaptations through mitochondrial dynamics remains poorly understood. This review attempts to highlight recent developments investigating the effects of exercise on mitochondrial dynamics, while attempting to offer a perspective of the methodological refinements and potential variables, such as substrate/glycogen availability, which should be considered going forward.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00311.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Exercise and nutritional modulation are potent stimuli for eliciting increases in mitochondrial mass and function. Collectively, these beneficial adaptations are increasingly recognized to coincide with improvements to skeletal muscle health. Mitochondrial dynamics of fission and fusion are increasingly implicated as having a central role in mediating aspects of key organelle adaptions that are seen with exercise. Exercise-induced mitochondrial adaptations that dynamics have been implicated in are: 1) Increases to mitochondrial turnover, resulting from elevated rates of mitochondrial synthesis (biogenesis) and degradative (mitophagy) processes. 2) Morphological changes to the 3D tubular network, known as the mitochondrial reticulum, that mitochondria form in skeletal muscle. Notably, mitochondrial fission has also been implicated in coordinating increases in mitophagy, following acute exercise. Further, increased fusion following exercise training promotes increased connectivity of the mitochondrial reticulum and is associated with improved metabolism and mitochondrial function. However, the molecular basis and fashion in which exercise infers beneficial mitochondrial adaptations through mitochondrial dynamics remains poorly understood. This review attempts to highlight recent developments investigating the effects of exercise on mitochondrial dynamics, while attempting to offer a perspective of the methodological refinements and potential variables, such as substrate/glycogen availability, which should be considered going forward.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.