Deep Phenotyping of Pulmonary Edema and Pulmonary Vascular Permeability in COVID-19 ARDS.

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Job R Schippers, Leila N Atmowihardjo, Erik Duijvelaar, Lars G Knaap, Mihai G Netea, Lilian J Meijboom, Lieuwe D J Bos, Harm Jan Bogaard, Jurjan Aman
{"title":"Deep Phenotyping of Pulmonary Edema and Pulmonary Vascular Permeability in COVID-19 ARDS.","authors":"Job R Schippers, Leila N Atmowihardjo, Erik Duijvelaar, Lars G Knaap, Mihai G Netea, Lilian J Meijboom, Lieuwe D J Bos, Harm Jan Bogaard, Jurjan Aman","doi":"10.1152/ajplung.00196.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Background Clinical monitoring of pulmonary edema due to vascular hyperpermeability in ARDS poses significant clinical challenges. Presently, no biological or radiological markers are available for quantifying pulmonary edema. Our aim was to phenotype pulmonary edema and pulmonary vascular permeability in patients with COVID-19 ARDS. Methods Transpulmonary thermodilution measurements were conducted in 65 COVID-19 ARDS patients on the day of intubation to determine extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPi). In parallel, ventilatory parameters, clinical outcomes, the volume of lung opacity measured by chest CT, and plasma proteomics (358 unique proteins) were compared between tertiles based on the EVLWi and PVPi. Regression models were used to associate EVLWi and PVPi with plasma, radiological, and clinical parameters. Computational pathway analysis was performed on significant plasma proteins in the regression models. Results Patients with the highest EVLWi values at intubation exhibited poorer oxygenation parameters and more days on the ventilator. Extravascular lung water strongly correlated with the total volume of opacity observed on CT(r=0.72), while the PVPi had weaker associations with clinical and radiological parameters. Plasma protein concentrations demonstrated a stronger correlation with PVPi than with EVLWi. The highest tertile of PVPi was associated with proteins linked to the acute phase response (cytokine and chemokine signaling) and extracellular matrix turnover. Conclusions In the clinical setting of COVID-19 ARDS, pulmonary edema (EVLWi) can be accurately quantified through chest CT and parallels deterioration in ventilatory parameters and clinical outcomes. Vascular permeability (PVPi) is strongly reflected by inflammatory plasma proteins.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00196.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background Clinical monitoring of pulmonary edema due to vascular hyperpermeability in ARDS poses significant clinical challenges. Presently, no biological or radiological markers are available for quantifying pulmonary edema. Our aim was to phenotype pulmonary edema and pulmonary vascular permeability in patients with COVID-19 ARDS. Methods Transpulmonary thermodilution measurements were conducted in 65 COVID-19 ARDS patients on the day of intubation to determine extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPi). In parallel, ventilatory parameters, clinical outcomes, the volume of lung opacity measured by chest CT, and plasma proteomics (358 unique proteins) were compared between tertiles based on the EVLWi and PVPi. Regression models were used to associate EVLWi and PVPi with plasma, radiological, and clinical parameters. Computational pathway analysis was performed on significant plasma proteins in the regression models. Results Patients with the highest EVLWi values at intubation exhibited poorer oxygenation parameters and more days on the ventilator. Extravascular lung water strongly correlated with the total volume of opacity observed on CT(r=0.72), while the PVPi had weaker associations with clinical and radiological parameters. Plasma protein concentrations demonstrated a stronger correlation with PVPi than with EVLWi. The highest tertile of PVPi was associated with proteins linked to the acute phase response (cytokine and chemokine signaling) and extracellular matrix turnover. Conclusions In the clinical setting of COVID-19 ARDS, pulmonary edema (EVLWi) can be accurately quantified through chest CT and parallels deterioration in ventilatory parameters and clinical outcomes. Vascular permeability (PVPi) is strongly reflected by inflammatory plasma proteins.

COVID-19 ARDS 中肺水肿和肺血管通透性的深度表型分析
背景 对 ARDS 中血管高渗透性引起的肺水肿进行临床监测是一项重大的临床挑战。目前,还没有生物或放射标记物可用于量化肺水肿。我们的目的是对 COVID-19 ARDS 患者的肺水肿和肺血管通透性进行表型分析。方法 在插管当天对 65 名 COVID-19 ARDS 患者进行经肺热稀释测量,以确定血管外肺水指数(EVLWi)和肺血管通透性指数(PVPi)。同时,还比较了基于 EVLWi 和 PVPi 分层的通气参数、临床结果、胸部 CT 测量的肺不张体积和血浆蛋白质组学(358 种独特蛋白质)。使用回归模型将 EVLWi 和 PVPi 与血浆、放射学和临床参数联系起来。对回归模型中的重要血浆蛋白进行了计算通路分析。结果 插管时 EVLWi 值最高的患者氧合参数较差,使用呼吸机的天数较多。血管外肺水与 CT 观察到的不透明总体积密切相关(r=0.72),而 PVPi 与临床和放射学参数的相关性较弱。血浆蛋白浓度与 PVPi 的相关性强于与 EVLWi 的相关性。PVPi 的最高三分位与急性期反应(细胞因子和趋化因子信号转导)和细胞外基质周转相关的蛋白质有关。结论 在 COVID-19 ARDS 的临床环境中,肺水肿(EVLWi)可通过胸部 CT 准确量化,并与通气参数和临床结果的恶化相平行。血管通透性(PVPi)在炎性血浆蛋白中反映强烈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信