Sustainable production of radionuclidically pure antimony-119

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Aeli P. Olson, Francesca A. Verich, Paul A. Ellison, Eduardo Aluicio-Sarduy, Robert J. Nickles, Jason C. Mixdorf, Todd E. Barnhart, Jonathan W. Engle
{"title":"Sustainable production of radionuclidically pure antimony-119","authors":"Aeli P. Olson,&nbsp;Francesca A. Verich,&nbsp;Paul A. Ellison,&nbsp;Eduardo Aluicio-Sarduy,&nbsp;Robert J. Nickles,&nbsp;Jason C. Mixdorf,&nbsp;Todd E. Barnhart,&nbsp;Jonathan W. Engle","doi":"10.1186/s41181-024-00303-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Radiopharmaceutical therapy (RPT) uses radionuclides that decay via one of three therapeutically relevant decay modes (alpha, beta, and internal conversion (IC) / Auger electron (AE) emission) to deliver short range, highly damaging radiation inside of diseased cells, maintaining localized dose distribution and sparing healthy cells. Antimony-119 (<sup>119</sup>Sb, t<sub>1/2</sub> = 38.19 h, EC = 100%) is one such IC/AE emitting radionuclide, previously limited to in silico computational investigation due to barriers in production, chemical separation, and chelation. A theranostic (therapeutic/diagnostic) pair can be formed with <sup>119</sup>Sb’s radioisotopic imaging analogue <sup>117</sup>Sb (t<sub>1/2</sub> = 2.80 h, E<sub>γ</sub> = 158.6 keV, I<sub>γ</sub> = 85.9%, β<sup>+</sup> = 262.4 keV, I<sub>β+</sub> = 1.81%).</p><h3>Results</h3><p>Within, we report techniques for sustainable and cost-effective production of pre-clinical quality and quantity, radionuclidically pure <sup>119</sup>Sb and <sup>117</sup>Sb, novel low energy photon measurement techniques for <sup>119</sup>Sb activity determination, and physical yields for various tin target isotopic enrichments and thicknesses using (p, n) and (d, n) nuclear reactions. Additionally, we present a two-column separation providing a radioantimony yield of 73.1% ± 6.9% (<i>N</i> = 3) and tin separation factor of (6.8 ± 5.5) x 10<sup>5</sup> (<i>N</i> = 3). Apparent molar activity measurements for deuteron produced <sup>117</sup>Sb using the chelator TREN-CAM were measured at 42.4 ± 25 MBq <sup>117</sup>Sb/µmol (1.14 ± 0.68 mCi/µmol), and we recovered enriched <sup>119</sup>Sn target material at a recycling efficiency of 80.2% ± 5.5% (<i>N</i> = 6) with losses of 11.6 mg ± 0.8 mg (<i>N</i> = 6) per production.</p><h3>Conclusion</h3><p>We report significant steps in overcoming barriers in <sup>119</sup>Sb production, chemical isolation and purification, enriched target material recycling, and chelation, helping promote accessibility and application of this promising therapeutic radionuclide. We describe a method for <sup>119</sup>Sb activity measurement using its low energy gamma (23.87 keV), negating the need for attenuation correction. Finally, we report the largest yet-measured <sup>119</sup>Sb production yields using proton and deuteron irradiation of natural and enriched targets and radioisotopic purity &gt; 99.8% at end of purification.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00303-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Radiopharmaceutical therapy (RPT) uses radionuclides that decay via one of three therapeutically relevant decay modes (alpha, beta, and internal conversion (IC) / Auger electron (AE) emission) to deliver short range, highly damaging radiation inside of diseased cells, maintaining localized dose distribution and sparing healthy cells. Antimony-119 (119Sb, t1/2 = 38.19 h, EC = 100%) is one such IC/AE emitting radionuclide, previously limited to in silico computational investigation due to barriers in production, chemical separation, and chelation. A theranostic (therapeutic/diagnostic) pair can be formed with 119Sb’s radioisotopic imaging analogue 117Sb (t1/2 = 2.80 h, Eγ = 158.6 keV, Iγ = 85.9%, β+ = 262.4 keV, Iβ+ = 1.81%).

Results

Within, we report techniques for sustainable and cost-effective production of pre-clinical quality and quantity, radionuclidically pure 119Sb and 117Sb, novel low energy photon measurement techniques for 119Sb activity determination, and physical yields for various tin target isotopic enrichments and thicknesses using (p, n) and (d, n) nuclear reactions. Additionally, we present a two-column separation providing a radioantimony yield of 73.1% ± 6.9% (N = 3) and tin separation factor of (6.8 ± 5.5) x 105 (N = 3). Apparent molar activity measurements for deuteron produced 117Sb using the chelator TREN-CAM were measured at 42.4 ± 25 MBq 117Sb/µmol (1.14 ± 0.68 mCi/µmol), and we recovered enriched 119Sn target material at a recycling efficiency of 80.2% ± 5.5% (N = 6) with losses of 11.6 mg ± 0.8 mg (N = 6) per production.

Conclusion

We report significant steps in overcoming barriers in 119Sb production, chemical isolation and purification, enriched target material recycling, and chelation, helping promote accessibility and application of this promising therapeutic radionuclide. We describe a method for 119Sb activity measurement using its low energy gamma (23.87 keV), negating the need for attenuation correction. Finally, we report the largest yet-measured 119Sb production yields using proton and deuteron irradiation of natural and enriched targets and radioisotopic purity > 99.8% at end of purification.

放射性核素纯锑-119 的可持续生产。
背景:放射性药物治疗(RPT)使用通过三种治疗相关衰变模式(α、β和内部转换(IC)/奥杰电子(AE)发射)之一衰变的放射性核素,在病变细胞内释放短距离、高破坏性辐射,维持局部剂量分布,并保护健康细胞。锑-119(119Sb,t1/2 = 38.19 h,EC = 100%)就是这样一种内转换/欧杰电子发射放射性核素,由于生产、化学分离和螯合方面的障碍,这种放射性核素以前仅限于硅学计算研究。119Sb 的放射性同位素成像类似物 117Sb(t1/2 = 2.80 h,Eγ = 158.6 keV,Iγ = 85.9%,β+ = 262.4 keV,Iβ+ = 1.81%)可以形成治疗(治疗/诊断)对:在本报告中,我们介绍了利用(p,n)和(d,n)核反应,以可持续和具有成本效益的方式生产临床前质量和数量的放射性核素纯 119Sb 和 117Sb 的技术、用于确定 119Sb 活度的新型低能光子测量技术,以及各种锡靶同位素富集度和厚度的物理产率。此外,我们还介绍了一种双柱分离法,其放射性锑收率为 73.1% ± 6.9% (N = 3),锡分离因子为 (6.8 ± 5.5) x 105 (N = 3)。使用螯合剂 TREN-CAM 测量的氘核产生的 117Sb 表摩尔活度为 42.4 ± 25 MBq 117Sb/µmol(1.14 ± 0.68 mCi/µmol),我们回收了富集的 119Sn 靶材料,回收效率为 80.2% ± 5.5%(N = 6),每次生产的损失为 11.6 mg ± 0.8 mg(N = 6):我们报告了在克服 119Sb 生产、化学分离和纯化、富集靶材料回收和螯合障碍方面所采取的重要步骤,有助于促进这种有前途的治疗性放射性核素的获取和应用。我们介绍了一种利用 119Sb 的低能量伽马射线(23.87 千伏)进行放射性活度测量的方法,无需进行衰减校正。最后,我们报告了使用质子和氘核辐照天然靶和富集靶的最大 119Sb 产率,以及纯化结束时放射性同位素纯度大于 99.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信