{"title":"Piezoelectric-mediated two-dimensional copper-based metal–organic framework for synergistic sonodynamic and cuproptosis-driven tumor therapy","authors":"","doi":"10.1016/j.jcis.2024.10.108","DOIUrl":null,"url":null,"abstract":"<div><div>Sonodynamic therapy (SDT) is a minimally invasive therapeutic approach that utilizes sonosensitizers to catalyze substrates and generate reactive oxygen species (ROS) under ultrasound stimulation, ultimately inducing tumor cell death. Enhancing the piezoelectric properties of nanomaterials and modulating the semiconductor energy band are effective strategies to improve the catalytic efficiency of sonosensitizers. In this study, we developed a two-dimensional (2D) copper-based piezoelectric metal–organic framework (MOF) sonosensitizer, denoted as CM, through the coordination of copper and dimethylimidazole. The unique 2D MOF structure imparts CM with piezoelectric characteristics, enabling it to enhance SDT efficacy by modulating the semiconductor bandgap and carrier mobility. Upon ultrasound irradiation, CM catalyzes oxygen to undergo a cascade reaction, producing highly toxic singlet oxygen. Additionally, cupric ions in CM can be reduced by glutathione, facilitating the spontaneous catalysis of hydrogen peroxide in tumors to generate hydroxyl radicals and deplete glutathione, thereby inducing oxidative damage. Moreover, cupric ions in CM can trigger tumor cell cuproptosis, which, in combination with the generated ROS, accelerates cell death. Thus, this study establishes a MOF-based system for controllably inducing multi-pathway cancer cell death and provides a foundation for enhancing ultrasound-catalyzed tumor therapy through the optimization of piezoelectric properties.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724024627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sonodynamic therapy (SDT) is a minimally invasive therapeutic approach that utilizes sonosensitizers to catalyze substrates and generate reactive oxygen species (ROS) under ultrasound stimulation, ultimately inducing tumor cell death. Enhancing the piezoelectric properties of nanomaterials and modulating the semiconductor energy band are effective strategies to improve the catalytic efficiency of sonosensitizers. In this study, we developed a two-dimensional (2D) copper-based piezoelectric metal–organic framework (MOF) sonosensitizer, denoted as CM, through the coordination of copper and dimethylimidazole. The unique 2D MOF structure imparts CM with piezoelectric characteristics, enabling it to enhance SDT efficacy by modulating the semiconductor bandgap and carrier mobility. Upon ultrasound irradiation, CM catalyzes oxygen to undergo a cascade reaction, producing highly toxic singlet oxygen. Additionally, cupric ions in CM can be reduced by glutathione, facilitating the spontaneous catalysis of hydrogen peroxide in tumors to generate hydroxyl radicals and deplete glutathione, thereby inducing oxidative damage. Moreover, cupric ions in CM can trigger tumor cell cuproptosis, which, in combination with the generated ROS, accelerates cell death. Thus, this study establishes a MOF-based system for controllably inducing multi-pathway cancer cell death and provides a foundation for enhancing ultrasound-catalyzed tumor therapy through the optimization of piezoelectric properties.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies