Evaluating the synergistic effects of sesame cake powder and soy protein isolate on rheological, textural, nutritional, and phenolic profiles of high-moisture extrusion processed meat analogs.
{"title":"Evaluating the synergistic effects of sesame cake powder and soy protein isolate on rheological, textural, nutritional, and phenolic profiles of high-moisture extrusion processed meat analogs.","authors":"Shyam Sundar, Balwinder Singh, Amritpal Kaur","doi":"10.1111/1750-3841.17445","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the high-moisture meat analogs (HmMAs) were developed by incorporating defatted sesame cake powder (DSP) in soy protein isolate (SyPI). The quality attributes of HmMA like visual appearance, specific mechanical energy (SME), mass flow rate (MFR), phenolic profile, textural and rheological properties were assessed after varying DSP concentrations (0%, 20%, 40%, and 60% w/w) and feed moisture (FM) levels (55% and 60%). The HmMA<sub>1</sub> (derived solely from SyPI) exhibited higher hardness, chewiness, gumminess, cohesiveness, and springiness. The HmMA prepared from SyPI-DSP blends (HmMA<sub>2-8</sub>) demonstrated significant improvements in nutritional composition, and their visual characteristics indicated noticeable anisotropy. The interaction between SyPI and DSP influenced the quality of HmMA. The higher DSP concentration led to higher MFR and deeper curvatures of U-shaped structures, whereas lower SMS, textural and rheological properties. The DSP incorporation and 55% FM adjustments allowed mimicking meat cuts with thick fiber, influenced color, and proved advantageous in developing white meat analogs with higher free phenolics. The findings of the study suggest avenues for exploring DSP at a suitable level in SyPI for the development of better quality meat analogs.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17445","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the high-moisture meat analogs (HmMAs) were developed by incorporating defatted sesame cake powder (DSP) in soy protein isolate (SyPI). The quality attributes of HmMA like visual appearance, specific mechanical energy (SME), mass flow rate (MFR), phenolic profile, textural and rheological properties were assessed after varying DSP concentrations (0%, 20%, 40%, and 60% w/w) and feed moisture (FM) levels (55% and 60%). The HmMA1 (derived solely from SyPI) exhibited higher hardness, chewiness, gumminess, cohesiveness, and springiness. The HmMA prepared from SyPI-DSP blends (HmMA2-8) demonstrated significant improvements in nutritional composition, and their visual characteristics indicated noticeable anisotropy. The interaction between SyPI and DSP influenced the quality of HmMA. The higher DSP concentration led to higher MFR and deeper curvatures of U-shaped structures, whereas lower SMS, textural and rheological properties. The DSP incorporation and 55% FM adjustments allowed mimicking meat cuts with thick fiber, influenced color, and proved advantageous in developing white meat analogs with higher free phenolics. The findings of the study suggest avenues for exploring DSP at a suitable level in SyPI for the development of better quality meat analogs.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.