Backdoor Attacks against Voice Recognition Systems: A Survey

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Baochen Yan, Jiahe Lan, Zheng Yan
{"title":"Backdoor Attacks against Voice Recognition Systems: A Survey","authors":"Baochen Yan, Jiahe Lan, Zheng Yan","doi":"10.1145/3701985","DOIUrl":null,"url":null,"abstract":"Voice Recognition Systems (VRSs) employ deep learning for speech recognition and speaker recognition. They have been widely deployed in various real-world applications, from intelligent voice assistance to telephony surveillance and biometric authentication. However, prior research has revealed the vulnerability of VRSs to backdoor attacks, which pose a significant threat to the security and privacy of VRSs. Unfortunately, existing literature lacks a thorough review on this topic. This paper fills this research gap by conducting a comprehensive survey on backdoor attacks against VRSs. We first present an overview of VRSs and backdoor attacks, elucidating their basic knowledge. Then we propose a set of evaluation criteria to assess the performance of backdoor attack methods. Next, we present a comprehensive taxonomy of backdoor attacks against VRSs from different perspectives and analyze the characteristic of different categories. After that, we comprehensively review existing attack methods and analyze their pros and cons based on the proposed criteria. Furthermore, we review classic backdoor defense methods and generic audio defense techniques. Then we discuss the feasibility of deploying them on VRSs. Finally, we figure out several open issues and further suggest future research directions to motivate the research of VRSs security.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"15 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3701985","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Voice Recognition Systems (VRSs) employ deep learning for speech recognition and speaker recognition. They have been widely deployed in various real-world applications, from intelligent voice assistance to telephony surveillance and biometric authentication. However, prior research has revealed the vulnerability of VRSs to backdoor attacks, which pose a significant threat to the security and privacy of VRSs. Unfortunately, existing literature lacks a thorough review on this topic. This paper fills this research gap by conducting a comprehensive survey on backdoor attacks against VRSs. We first present an overview of VRSs and backdoor attacks, elucidating their basic knowledge. Then we propose a set of evaluation criteria to assess the performance of backdoor attack methods. Next, we present a comprehensive taxonomy of backdoor attacks against VRSs from different perspectives and analyze the characteristic of different categories. After that, we comprehensively review existing attack methods and analyze their pros and cons based on the proposed criteria. Furthermore, we review classic backdoor defense methods and generic audio defense techniques. Then we discuss the feasibility of deploying them on VRSs. Finally, we figure out several open issues and further suggest future research directions to motivate the research of VRSs security.
针对语音识别系统的后门攻击:调查
语音识别系统(VRS)采用深度学习技术进行语音识别和说话人识别。它们已被广泛应用于各种现实世界的应用中,从智能语音辅助到电话监控和生物识别身份验证。然而,先前的研究揭示了 VRS 易受后门攻击的弱点,这对 VRS 的安全性和隐私构成了重大威胁。遗憾的是,现有文献缺乏对这一主题的全面综述。本文通过对针对 VRS 的后门攻击进行全面调查,填补了这一研究空白。我们首先概述了 VRS 和后门攻击,阐明了它们的基本知识。然后,我们提出了一套评估后门攻击方法性能的评价标准。接着,我们从不同角度对针对 VRS 的后门攻击进行了全面分类,并分析了不同类别的特点。之后,我们全面回顾了现有的攻击方法,并根据提出的标准分析了它们的优缺点。此外,我们还回顾了经典后门防御方法和通用音频防御技术。然后,我们讨论了在 VRS 上部署这些技术的可行性。最后,我们指出了几个有待解决的问题,并进一步提出了未来的研究方向,以推动 VRS 安全性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信