Coupling Geomechanical and Gravity Flow Models to Obtain More Representative Flow Simulations and Air‐Gap Risk Identification in Caving Mining

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Raúl Castro, Diego Oyarzo, René Gómez, Kimie Suzuki, Miguel Cifuentes
{"title":"Coupling Geomechanical and Gravity Flow Models to Obtain More Representative Flow Simulations and Air‐Gap Risk Identification in Caving Mining","authors":"Raúl Castro, Diego Oyarzo, René Gómez, Kimie Suzuki, Miguel Cifuentes","doi":"10.1002/nag.3880","DOIUrl":null,"url":null,"abstract":"The extraction and propagation of caving are complex phenomena involving the breaking of the rock mass, the formation of a column of broken material, and the extraction from the column base. Geomechanical modeling in cave mining commonly uses approaches to model the rock mass as a continuous material, while discontinuous modeling is frequently used for the column of broken material. However, it remains complex to include all mechanisms in a single model. Therefore, to achieve a better representation of ore breakage and extraction in caving mining, this work couples FLAC<jats:sup>3D</jats:sup>, a continuous finite volume tool, with FlowSim, a discrete tool based on cellular automata, to determine the air gap volume. The methodology first defines the height of caving propagation and the cave back with a tool that models solid rock mass in a continuous manner, which are used to constrain the cellular automata tool that simulates the flow of broken material. The results show that unidirectional FLAC<jats:sup>3D</jats:sup>‐FlowSim coupling reproduces the generation of cave backs and air gaps in the propagation of caving, rendering the methodology valuable for preliminary estimation of air volumes over fragmented material and the generation of supportive data to control the caving process.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"2018 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3880","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The extraction and propagation of caving are complex phenomena involving the breaking of the rock mass, the formation of a column of broken material, and the extraction from the column base. Geomechanical modeling in cave mining commonly uses approaches to model the rock mass as a continuous material, while discontinuous modeling is frequently used for the column of broken material. However, it remains complex to include all mechanisms in a single model. Therefore, to achieve a better representation of ore breakage and extraction in caving mining, this work couples FLAC3D, a continuous finite volume tool, with FlowSim, a discrete tool based on cellular automata, to determine the air gap volume. The methodology first defines the height of caving propagation and the cave back with a tool that models solid rock mass in a continuous manner, which are used to constrain the cellular automata tool that simulates the flow of broken material. The results show that unidirectional FLAC3D‐FlowSim coupling reproduces the generation of cave backs and air gaps in the propagation of caving, rendering the methodology valuable for preliminary estimation of air volumes over fragmented material and the generation of supportive data to control the caving process.
耦合地质力学和重力流模型,获得更具代表性的洞穴采矿流动模拟和气隙风险识别
洞穴的开采和传播是一种复杂的现象,涉及岩体的破碎、破碎物质柱的形成以及从柱基的开采。洞穴开采中的地质力学建模通常采用将岩体作为连续材料建模的方法,而破碎材料柱则经常采用不连续建模的方法。然而,将所有机理都纳入一个模型仍然很复杂。因此,为了更好地表示崩落采矿中的矿石破碎和提取,本研究将连续有限体积工具 FLAC3D 与基于蜂窝自动机的离散工具 FlowSim 结合起来,以确定气隙体积。该方法首先用连续的固体岩体建模工具定义了崩落传播的高度和回洞,并以此来约束模拟破碎材料流动的蜂窝自动机工具。结果表明,FLAC3D-FlowSim 的单向耦合再现了洞穴传播过程中洞穴后退和气隙的产生,使该方法在初步估算破碎材料上的气量和生成控制洞穴过程的辅助数据方面具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信