{"title":"End-to-End Multitarget Flexible Job Shop Scheduling With Deep Reinforcement Learning","authors":"Rongkai Wang;Yiyang Jing;Chaojie Gu;Shibo He;Jiming Chen","doi":"10.1109/JIOT.2024.3485748","DOIUrl":null,"url":null,"abstract":"Modeling and solving the flexible job shop scheduling problem (FJSP) is critical for modern manufacturing. However, existing works primarily focus on the time-related makespan target, often neglecting other practical factors, such as transportation. To address this, we formulate a more comprehensive multitarget FJSP that integrates makespan with varied transportation times and the total energy consumption of processing and transportation. The combination of these multiple real-world production targets renders the scheduling problem highly complex and challenging to solve. To overcome this challenge, this article proposes an end-to-end multiagent proximal policy optimization (PPO) approach. First, we represent the scheduling problem as a disjunctive graph (DG) with designed features of subtasks and constructed machine nodes, additionally integrating information of arcs denoted as transportation and standby time, respectively. Next, we use a graph neural network (GNN) to encode features into node embeddings, representing the states at each decision step. Finally, based on the vectorized value function and local critic networks, the PPO algorithm and DG simulation environment iteratively interact to train the policy network. Our extensive experimental results validate the performance of the proposed approach, demonstrating its superiority over the state-of-the-art in terms of high-quality solutions, online computation time, stability, and generalization.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 4","pages":"4420-4434"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10734312/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling and solving the flexible job shop scheduling problem (FJSP) is critical for modern manufacturing. However, existing works primarily focus on the time-related makespan target, often neglecting other practical factors, such as transportation. To address this, we formulate a more comprehensive multitarget FJSP that integrates makespan with varied transportation times and the total energy consumption of processing and transportation. The combination of these multiple real-world production targets renders the scheduling problem highly complex and challenging to solve. To overcome this challenge, this article proposes an end-to-end multiagent proximal policy optimization (PPO) approach. First, we represent the scheduling problem as a disjunctive graph (DG) with designed features of subtasks and constructed machine nodes, additionally integrating information of arcs denoted as transportation and standby time, respectively. Next, we use a graph neural network (GNN) to encode features into node embeddings, representing the states at each decision step. Finally, based on the vectorized value function and local critic networks, the PPO algorithm and DG simulation environment iteratively interact to train the policy network. Our extensive experimental results validate the performance of the proposed approach, demonstrating its superiority over the state-of-the-art in terms of high-quality solutions, online computation time, stability, and generalization.
期刊介绍:
The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.