{"title":"The renormalization group for large-scale structure: origin of galaxy stochasticity","authors":"Henrique Rubira and Fabian Schmidt","doi":"10.1088/1475-7516/2024/10/092","DOIUrl":null,"url":null,"abstract":"The renormalization group equations for large-scale structure (RG-LSS) describe how the bias and stochastic (noise) parameters — both of matter and biased tracers such as galaxies — evolve as a function of the cutoff Λ of the effective field theory. In previous work, we derived the RG-LSS equations for the bias parameters using the Wilson-Polchinski framework. Here, we extend these results to include stochastic contributions, corresponding to terms in the effective action that are higher order in the current J. We derive the general local interaction terms that describe stochasticity at all orders in perturbations, and a closed set of nonlinear RG equations for their coefficients. These imply that a single nonlinear bias term generates all stochastic moments through RG evolution. Further, the evolution is controlled by a different, lower scale than the nonlinear scale. This has implications for the optimal choice of the renormalization scale when comparing the theory with data to obtain cosmological constraints.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/092","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The renormalization group equations for large-scale structure (RG-LSS) describe how the bias and stochastic (noise) parameters — both of matter and biased tracers such as galaxies — evolve as a function of the cutoff Λ of the effective field theory. In previous work, we derived the RG-LSS equations for the bias parameters using the Wilson-Polchinski framework. Here, we extend these results to include stochastic contributions, corresponding to terms in the effective action that are higher order in the current J. We derive the general local interaction terms that describe stochasticity at all orders in perturbations, and a closed set of nonlinear RG equations for their coefficients. These imply that a single nonlinear bias term generates all stochastic moments through RG evolution. Further, the evolution is controlled by a different, lower scale than the nonlinear scale. This has implications for the optimal choice of the renormalization scale when comparing the theory with data to obtain cosmological constraints.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.