Limitations for Quantum Algorithms to Solve Turbulent and Chaotic Systems

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-10-24 DOI:10.22331/q-2024-10-24-1509
Dylan Lewis, Stephan Eidenbenz, Balasubramanya Nadiga, Yiğit Subaşı
{"title":"Limitations for Quantum Algorithms to Solve Turbulent and Chaotic Systems","authors":"Dylan Lewis, Stephan Eidenbenz, Balasubramanya Nadiga, Yiğit Subaşı","doi":"10.22331/q-2024-10-24-1509","DOIUrl":null,"url":null,"abstract":"We investigate the limitations of quantum computers for solving nonlinear dynamical systems. In particular, we tighten the worst-case bounds of the quantum Carleman linearisation (QCL) algorithm [Liu et al., PNAS 118, 2021] answering one of their open questions. We provide a further significant limitation for any quantum algorithm that aims to output a quantum state that approximates the normalized solution vector. Given a natural choice of coordinates for a dynamical system with one or more positive Lyapunov exponents and solutions that grow sub-exponentially, we prove that any such algorithm has complexity scaling at least exponentially in the integration time. As such, an efficient quantum algorithm for simulating chaotic systems or regimes is likely not possible.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"3 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-24-1509","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the limitations of quantum computers for solving nonlinear dynamical systems. In particular, we tighten the worst-case bounds of the quantum Carleman linearisation (QCL) algorithm [Liu et al., PNAS 118, 2021] answering one of their open questions. We provide a further significant limitation for any quantum algorithm that aims to output a quantum state that approximates the normalized solution vector. Given a natural choice of coordinates for a dynamical system with one or more positive Lyapunov exponents and solutions that grow sub-exponentially, we prove that any such algorithm has complexity scaling at least exponentially in the integration time. As such, an efficient quantum algorithm for simulating chaotic systems or regimes is likely not possible.
量子算法解决湍流和混沌系统的局限性
我们研究了量子计算机在求解非线性动力学系统方面的局限性。特别是,我们收紧了量子卡勒曼线性化(QCL)算法[Liu 等人,PNAS 118, 2021]的最坏情况边界,回答了其中一个开放性问题。我们为任何旨在输出近似归一化解向量的量子态的量子算法提供了进一步的重要限制。给定一个具有一个或多个正 Lyapunov 指数且解呈亚指数增长的动力学系统的自然选择坐标,我们证明任何此类算法的复杂度都至少以积分时间的指数级缩放。因此,模拟混沌系统或机制的高效量子算法很可能是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信