{"title":"Modal identification of wind turbine tower based on optimal fractional order statistical moments","authors":"Yang Yang, Zhewei Wang, Shuai Tao, Qingshan Yang, Hwa Kian Chai","doi":"10.1111/mice.13361","DOIUrl":null,"url":null,"abstract":"In vibration testing of civil engineering structures, the first two vibration modes are crucial in representing the global dynamic behavior of the structure measured. In the present study, a comprehensive method is proposed to identify the first two vibration modes of wind turbine towers, which is based on the analysis of fractional order statistical moments (FSM). This study offers novel contributions in two key aspects: (1) theoretical derivations of the relationship between FSM and vibration mode; and (2) successful use of 32/7-order displacement statistical moment <span data-altimg=\"/cms/asset/c88d0200-4120-4dd6-a987-0b203283f98b/mice13361-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"162\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/mice13361-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"0,9\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper M Subscript d Superscript 32 divided by 7 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msubsup data-semantic-children=\"1,2,6\" data-semantic-collapsed=\"(8 (7 1 2) 6)\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.317em; margin-left: -0.081em;\"><mjx-mrow data-semantic-children=\"3,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" size=\"s\" style=\"margin-left: 0.191em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:10939687:media:mice13361:mice13361-math-0001\" display=\"inline\" location=\"graphic/mice13361-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-content=\"0,9\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper M Subscript d Superscript 32 divided by 7 Baseline right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><msubsup data-semantic-=\"\" data-semantic-children=\"1,2,6\" data-semantic-collapsed=\"(8 (7 1 2) 6)\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">M</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mrow data-semantic-=\"\" data-semantic-children=\"3,5\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">32</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">7</mn></mrow></msubsup><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$( {M_d^{32/7}} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> as the optimal FSM to identify wind turbine tower modes, by combining with noise resistance analysis, sensitivity analysis, and stability analysis, respectively. Using the proposed method, the FSM was first used to identify the modal vibration of wind turbine towers. By obtaining the response of the structure on the same vertical line, FSM was then calculated to estimate the corresponding structural modal vibration. Considering other influencing factors in the field test, the modal identification results of this index under different excitation forms and noise conditions were analyzed based on numerical simulation and verified with field wind tower test data. The results of the evaluation show that the proposed statistical moments of <span data-altimg=\"/cms/asset/199a41a8-cf5b-40ad-afb5-405720e0559e/mice13361-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"163\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/mice13361-math-0002.png\"><mjx-semantics><mjx-msubsup data-semantic-children=\"0,1,5\" data-semantic-collapsed=\"(7 (6 0 1) 5)\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper M Subscript d Superscript 32 divided by 7\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.317em; margin-left: -0.081em;\"><mjx-mrow data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" size=\"s\" style=\"margin-left: 0.191em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-spacer style=\"margin-top: 0.18em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msubsup></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:10939687:media:mice13361:mice13361-math-0002\" display=\"inline\" location=\"graphic/mice13361-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msubsup data-semantic-=\"\" data-semantic-children=\"0,1,5\" data-semantic-collapsed=\"(7 (6 0 1) 5)\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper M Subscript d Superscript 32 divided by 7\" data-semantic-type=\"subsup\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">M</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mrow data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">32</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">7</mn></mrow></msubsup>$M_d^{32/7}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> can accurately identify the first two vibration modes of wind turbine towers. This presents a new robust method for modal vibration identification, that is, simple and effective in its implementation.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"3 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13361","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In vibration testing of civil engineering structures, the first two vibration modes are crucial in representing the global dynamic behavior of the structure measured. In the present study, a comprehensive method is proposed to identify the first two vibration modes of wind turbine towers, which is based on the analysis of fractional order statistical moments (FSM). This study offers novel contributions in two key aspects: (1) theoretical derivations of the relationship between FSM and vibration mode; and (2) successful use of 32/7-order displacement statistical moment as the optimal FSM to identify wind turbine tower modes, by combining with noise resistance analysis, sensitivity analysis, and stability analysis, respectively. Using the proposed method, the FSM was first used to identify the modal vibration of wind turbine towers. By obtaining the response of the structure on the same vertical line, FSM was then calculated to estimate the corresponding structural modal vibration. Considering other influencing factors in the field test, the modal identification results of this index under different excitation forms and noise conditions were analyzed based on numerical simulation and verified with field wind tower test data. The results of the evaluation show that the proposed statistical moments of can accurately identify the first two vibration modes of wind turbine towers. This presents a new robust method for modal vibration identification, that is, simple and effective in its implementation.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.