Gold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at primary and metastatic tumors

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuyan Jiang, Hongbin Cao, Huaping Deng, Li Guan, Jimpi Langthasa, Deana Rae Crystal Colburg, Stavros Melemenidis, Renee M. Cotton, John Aleman, Xiao-Jing Wang, Edward E. Graves, Anusha Kalbasi, Kanyi Pu, Jianghong Rao, Quynh-Thu Le
{"title":"Gold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at primary and metastatic tumors","authors":"Yuyan Jiang, Hongbin Cao, Huaping Deng, Li Guan, Jimpi Langthasa, Deana Rae Crystal Colburg, Stavros Melemenidis, Renee M. Cotton, John Aleman, Xiao-Jing Wang, Edward E. Graves, Anusha Kalbasi, Kanyi Pu, Jianghong Rao, Quynh-Thu Le","doi":"10.1038/s41587-024-02448-0","DOIUrl":null,"url":null,"abstract":"<p>Strategies to enhance the anti-tumor immune response of stereotactic ablative radiotherapy (SABR) at primary tumors and abscopal sites are under intensive investigation. Here we report a metabolizable binary supracluster (BSC<sub>gal</sub>) that combines gold nanoclusters as radiosensitizing adjuvants with small interfering RNA (siRNA) targeting the immunosuppressive mediator galectin-1 (Gal-1). BSC<sub>gal</sub> comprises reversibly crosslinked cationic gold nanoclusters and siRNA complexes in a polymer matrix that biodegrades over weeks, facilitating clearance (90.3% in vivo clearance at 4 weeks) to reduce toxicity. The particle size well above the renal filtration threshold facilitates passive delivery to tumors. Using mouse models of head and neck cancer, we show that BSC<sub>gal</sub> augments the radiodynamic and immunotherapeutic effects of SABR at the primary and metastatic tumors by promoting tumor-inhibitory leukocytes, upregulating cytotoxic granzyme B and reducing immunosuppressive cell populations. It outperforms SABR plus Gal-1 antagonists, chemoradiation drug cisplatin or PD-1 inhibitor. This work presents a translatable strategy to converge focal radiosensitization with targeted immune checkpoint silencing for personalized radioimmunotherapy.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"235 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02448-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Strategies to enhance the anti-tumor immune response of stereotactic ablative radiotherapy (SABR) at primary tumors and abscopal sites are under intensive investigation. Here we report a metabolizable binary supracluster (BSCgal) that combines gold nanoclusters as radiosensitizing adjuvants with small interfering RNA (siRNA) targeting the immunosuppressive mediator galectin-1 (Gal-1). BSCgal comprises reversibly crosslinked cationic gold nanoclusters and siRNA complexes in a polymer matrix that biodegrades over weeks, facilitating clearance (90.3% in vivo clearance at 4 weeks) to reduce toxicity. The particle size well above the renal filtration threshold facilitates passive delivery to tumors. Using mouse models of head and neck cancer, we show that BSCgal augments the radiodynamic and immunotherapeutic effects of SABR at the primary and metastatic tumors by promoting tumor-inhibitory leukocytes, upregulating cytotoxic granzyme B and reducing immunosuppressive cell populations. It outperforms SABR plus Gal-1 antagonists, chemoradiation drug cisplatin or PD-1 inhibitor. This work presents a translatable strategy to converge focal radiosensitization with targeted immune checkpoint silencing for personalized radioimmunotherapy.

Abstract Image

金-siRNA超簇可增强原发性和转移性肿瘤立体定向消融放疗的抗肿瘤免疫反应
目前正在深入研究增强原发性肿瘤和腹腔部位立体定向消融放疗(SABR)的抗肿瘤免疫反应的策略。在这里,我们报告了一种可代谢的二元超簇(BSCgal),它将作为放射增敏佐剂的金纳米簇与靶向免疫抑制介质 galectin-1 (Gal-1) 的小干扰 RNA (siRNA) 结合在一起。BSCgal 由聚合物基质中的可逆交联阳离子金纳米团簇和 siRNA 复合物组成,可在数周内生物降解,促进清除(4 周时体内清除率为 90.3%),从而降低毒性。颗粒大小远高于肾脏过滤阈值,有利于被动输送到肿瘤。通过使用头颈部癌症小鼠模型,我们发现 BSCgal 通过促进抑制肿瘤的白细胞、上调细胞毒性颗粒酶 B 和减少免疫抑制细胞群,增强了 SABR 对原发性和转移性肿瘤的放射动力和免疫治疗效果。它的疗效优于 SABR 加 Gal-1 拮抗剂、化疗药物顺铂或 PD-1 抑制剂。这项研究提出了一种可转化的策略,将病灶放射增敏与靶向免疫检查点沉默结合起来,实现个性化放射免疫疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信