{"title":"Modelling human liver disease: from steatotic liver disease to MASH-HCC","authors":"Christian Stoess, Ariel E. Feldstein","doi":"10.1038/s41574-024-01054-z","DOIUrl":null,"url":null,"abstract":"Having more refined mouse models of metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) will help to advance research into this disease. In their study, Jeong and colleagues use streptozotocin together with a high-fat diet for 6–60 weeks to investigate the progression from MASLD to hepatocellular carcinoma.","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41574-024-01054-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Having more refined mouse models of metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) will help to advance research into this disease. In their study, Jeong and colleagues use streptozotocin together with a high-fat diet for 6–60 weeks to investigate the progression from MASLD to hepatocellular carcinoma.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.