A prediction model for electroconvulsive therapy effectiveness in patients with major depressive disorder from the Dutch ECT Consortium (DEC)

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dore Loef, Adriaan W. Hoogendoorn, Metten Somers, Roel J. T. Mocking, Dominique S. Scheepens, Karel W. F. Scheepstra, Maaike Blijleven, Johanna M. Hegeman, Karen S. van den Berg, Bart Schut, Tom K. Birkenhager, Willemijn Heijnen, Didi Rhebergen, Mardien L. Oudega, Sigfried N. T. M. Schouws, Eric van Exel, Bart P. F. Rutten, Birit F. P. Broekman, Anton C. M. Vergouwen, Thomas J. C. Zoon, Rob M. Kok, Karina Somers, Esmée Verwijk, Jordy J. E. Rovers, Gijsbert Schuur, Jeroen A. van Waarde, Joey P. A. J. Verdijk, Dieneke Bloemkolk, Frank L. Gerritse, Hanneke van Welie, Bartholomeus C. M. Haarman, Sjoerd M. van Belkum, Maurice Vischjager, Karin Hagoort, Edwin van Dellen, Indira Tendolkar, Philip F. P. van Eijndhoven, Annemiek Dols
{"title":"A prediction model for electroconvulsive therapy effectiveness in patients with major depressive disorder from the Dutch ECT Consortium (DEC)","authors":"Dore Loef, Adriaan W. Hoogendoorn, Metten Somers, Roel J. T. Mocking, Dominique S. Scheepens, Karel W. F. Scheepstra, Maaike Blijleven, Johanna M. Hegeman, Karen S. van den Berg, Bart Schut, Tom K. Birkenhager, Willemijn Heijnen, Didi Rhebergen, Mardien L. Oudega, Sigfried N. T. M. Schouws, Eric van Exel, Bart P. F. Rutten, Birit F. P. Broekman, Anton C. M. Vergouwen, Thomas J. C. Zoon, Rob M. Kok, Karina Somers, Esmée Verwijk, Jordy J. E. Rovers, Gijsbert Schuur, Jeroen A. van Waarde, Joey P. A. J. Verdijk, Dieneke Bloemkolk, Frank L. Gerritse, Hanneke van Welie, Bartholomeus C. M. Haarman, Sjoerd M. van Belkum, Maurice Vischjager, Karin Hagoort, Edwin van Dellen, Indira Tendolkar, Philip F. P. van Eijndhoven, Annemiek Dols","doi":"10.1038/s41380-024-02803-2","DOIUrl":null,"url":null,"abstract":"<p>Reliable predictors for electroconvulsive therapy (ECT) effectiveness would allow a more precise and personalized approach for the treatment of major depressive disorder (MDD). Prediction models were created using a priori selected clinical variables based on previous meta-analyses. Multivariable linear regression analysis was used, applying backwards selection to determine predictor variables while allowing non-linear relations, to develop a prediction model for depression outcome post-ECT (and logistic regression for remission and response as secondary outcome measures). Internal validation and internal-external cross-validation were used to examine overfitting and generalizability of the model’s predictive performance. In total, 1892 adult patients with MDD were included from 22 clinical and research cohorts of the twelve sites within the Dutch ECT Consortium. The final primary prediction model showed several factors that significantly predicted a lower depression score post-ECT: higher age, shorter duration of the current depressive episode, severe MDD with psychotic features, lower level of previous antidepressant resistance in the current episode, higher pre-ECT global cognitive functioning, absence of a comorbid personality disorder, and a lower level of failed psychotherapy in the current episode. The optimism-adjusted R² of the final model was 19%. This prediction model based on readily available clinical information can reduce uncertainty of ECT outcomes and hereby inform clinical decision-making, as prompt referral for ECT may be particularly beneficial for individuals with the above-mentioned characteristics. However, despite including a large number of pretreatment factors, a large proportion of the variance in depression outcome post-ECT remained unpredictable.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"94 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02803-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable predictors for electroconvulsive therapy (ECT) effectiveness would allow a more precise and personalized approach for the treatment of major depressive disorder (MDD). Prediction models were created using a priori selected clinical variables based on previous meta-analyses. Multivariable linear regression analysis was used, applying backwards selection to determine predictor variables while allowing non-linear relations, to develop a prediction model for depression outcome post-ECT (and logistic regression for remission and response as secondary outcome measures). Internal validation and internal-external cross-validation were used to examine overfitting and generalizability of the model’s predictive performance. In total, 1892 adult patients with MDD were included from 22 clinical and research cohorts of the twelve sites within the Dutch ECT Consortium. The final primary prediction model showed several factors that significantly predicted a lower depression score post-ECT: higher age, shorter duration of the current depressive episode, severe MDD with psychotic features, lower level of previous antidepressant resistance in the current episode, higher pre-ECT global cognitive functioning, absence of a comorbid personality disorder, and a lower level of failed psychotherapy in the current episode. The optimism-adjusted R² of the final model was 19%. This prediction model based on readily available clinical information can reduce uncertainty of ECT outcomes and hereby inform clinical decision-making, as prompt referral for ECT may be particularly beneficial for individuals with the above-mentioned characteristics. However, despite including a large number of pretreatment factors, a large proportion of the variance in depression outcome post-ECT remained unpredictable.

Abstract Image

荷兰电休克疗法联盟(DEC)的重度抑郁症患者电休克疗法疗效预测模型
电休克疗法(ECT)疗效的可靠预测指标可使重度抑郁障碍(MDD)的治疗更加精确和个性化。我们根据以往的荟萃分析结果,利用先验选定的临床变量创建了预测模型。采用多变量线性回归分析,运用反向选择确定预测变量,同时允许非线性关系的存在,从而建立了治疗后抑郁结果的预测模型(缓解和反应的逻辑回归作为次要结果测量指标)。内部验证和内外部交叉验证用于检验模型预测性能的过拟合和可推广性。荷兰电痉挛疗法联盟(Dutch ECT Consortium)的 12 个研究机构共纳入了 22 个临床和研究队列中的 1892 名 MDD 成年患者。最终的主要预测模型显示,有几个因素可显著预测ECT后较低的抑郁评分:年龄较高、当前抑郁发作持续时间较短、严重的MDD伴有精神病特征、当前发作中先前的抗抑郁药耐受程度较低、ECT前的整体认知功能较高、无合并人格障碍以及当前发作中心理治疗失败程度较低。最终模型的乐观调整R²为19%。该预测模型基于现成的临床信息,可以减少电痉挛疗法结果的不确定性,从而为临床决策提供依据,因为及时转诊接受电痉挛疗法可能对具有上述特征的患者特别有益。然而,尽管包含了大量的预处理因素,但ECT后抑郁结果的很大一部分变异仍然是不可预测的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信