A MILP model for the connected multidimensional maximum bisection problem

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zoran Lj. Maksimović
{"title":"A MILP model for the connected multidimensional maximum bisection problem","authors":"Zoran Lj. Maksimović","doi":"10.1007/s10878-024-01220-z","DOIUrl":null,"url":null,"abstract":"<p>The Maximum Bisection Problem (MBP) is a well-known combinatorial optimization problem that has been proven to be NP-hard. The maximum bisection of a graph is the partition of its set of vertices into two subsets with an equal number of vertices, where the weight of the edge cut is maximal. This work introduces a connected multidimensional generalization of the Maximum Bisection Problem. In this NP-hard problem, weights on edges are vectors of non-negative numbers, and subgraphs induced by partitions must be connected. A mixed integer linear programming (MILP) formulation is proposed with proof of its correctness. The MILP formulation of the problem has a polynomial number of variables and constraints</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"2 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01220-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Maximum Bisection Problem (MBP) is a well-known combinatorial optimization problem that has been proven to be NP-hard. The maximum bisection of a graph is the partition of its set of vertices into two subsets with an equal number of vertices, where the weight of the edge cut is maximal. This work introduces a connected multidimensional generalization of the Maximum Bisection Problem. In this NP-hard problem, weights on edges are vectors of non-negative numbers, and subgraphs induced by partitions must be connected. A mixed integer linear programming (MILP) formulation is proposed with proof of its correctness. The MILP formulation of the problem has a polynomial number of variables and constraints

Abstract Image

连通多维最大分割问题的 MILP 模型
最大分割问题(MBP)是一个著名的组合优化问题,已被证明为 NP 难。图的最大分割是将图的顶点集分割成顶点数相等的两个子集,其中切边的权重最大。这项研究引入了最大分割问题的多维连接广义。在这个 NP 难问题中,边上的权重是非负数向量,分区诱导的子图必须是相连的。我们提出了一个混合整数线性规划(MILP)公式,并证明了其正确性。该问题的 MILP 公式具有多项式数量的变量和约束条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信