First-in-human dose escalation study of the first-in-class PDE3A-SLFN12 complex inducer BAY 2666605 in patients with advanced solid tumors co-expressing SLFN12 and PDE3A.
Kyriakos P. Papadopoulos, Meredith McKean, Silvia Goldoni, Isabelle Genvresse, Marine F. Garrido, Rui Li, Gary Wilkinson, Christoph Kneip, Timothy A. Yap
{"title":"First-in-human dose escalation study of the first-in-class PDE3A-SLFN12 complex inducer BAY 2666605 in patients with advanced solid tumors co-expressing SLFN12 and PDE3A.","authors":"Kyriakos P. Papadopoulos, Meredith McKean, Silvia Goldoni, Isabelle Genvresse, Marine F. Garrido, Rui Li, Gary Wilkinson, Christoph Kneip, Timothy A. Yap","doi":"10.1158/1078-0432.ccr-24-2713","DOIUrl":null,"url":null,"abstract":"Purpose: To evaluate the safety, tolerability, and pharmacokinetics of BAY 2666605, a velcrin that induces complex formation between the phosphodiesterase PDE3A and the protein Schlafen 12 (SLFN12) leading to a cytotoxic response in cancer cells. Patients and methods: This was a first-in-human phase I study of BAY 2666605 (NCT04809805), an oral, potent first-in-class PDE3A-SLFN12 complex inducer, with reduced PDE3A inhibition. Adults with advanced solid tumors that co-express SLFN12 and PDE3A received BAY 2666605 at escalating doses starting at 5 mg once daily in 28-day cycles. Forty-seven patients were pre-screened for SLFN12 and PDE3A overexpression, and 5 biomarker-positive patients received ≥ 1 BAY 2666605 dose. Results: The most common adverse event was grade 3-4 thrombocytopenia in 3 of the 5 patients treated. The long half-life (> 360 hours) and associated accumulation of BAY 2666605 led to the selection of an alternative schedule consisting of a loading dose with QD maintenance dose. The maximum tolerated dose was not established as the highest doses of both schedules were intolerable. No objective responses were observed. Due to the high expression of PDE3A in platelets compared to tumor tissues, the ex vivo dose-dependent inhibitory effect of BAY 2666605 on megakaryocytes, and the pharmacokinetic profile of the compound, alternative schedules were not predicted to ameliorate the mechanism-based thrombocytopenia. Conclusions: Despite the decreased PDE3A enzymatic inhibition profile of BAY 2666605, the occurrence of thrombocytopenia in treated patients, an on-target effect of the compound, precluded the achievement of a therapeutic window, consequently leading to trial termination.","PeriodicalId":10279,"journal":{"name":"Clinical Cancer Research","volume":"34 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1078-0432.ccr-24-2713","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the safety, tolerability, and pharmacokinetics of BAY 2666605, a velcrin that induces complex formation between the phosphodiesterase PDE3A and the protein Schlafen 12 (SLFN12) leading to a cytotoxic response in cancer cells. Patients and methods: This was a first-in-human phase I study of BAY 2666605 (NCT04809805), an oral, potent first-in-class PDE3A-SLFN12 complex inducer, with reduced PDE3A inhibition. Adults with advanced solid tumors that co-express SLFN12 and PDE3A received BAY 2666605 at escalating doses starting at 5 mg once daily in 28-day cycles. Forty-seven patients were pre-screened for SLFN12 and PDE3A overexpression, and 5 biomarker-positive patients received ≥ 1 BAY 2666605 dose. Results: The most common adverse event was grade 3-4 thrombocytopenia in 3 of the 5 patients treated. The long half-life (> 360 hours) and associated accumulation of BAY 2666605 led to the selection of an alternative schedule consisting of a loading dose with QD maintenance dose. The maximum tolerated dose was not established as the highest doses of both schedules were intolerable. No objective responses were observed. Due to the high expression of PDE3A in platelets compared to tumor tissues, the ex vivo dose-dependent inhibitory effect of BAY 2666605 on megakaryocytes, and the pharmacokinetic profile of the compound, alternative schedules were not predicted to ameliorate the mechanism-based thrombocytopenia. Conclusions: Despite the decreased PDE3A enzymatic inhibition profile of BAY 2666605, the occurrence of thrombocytopenia in treated patients, an on-target effect of the compound, precluded the achievement of a therapeutic window, consequently leading to trial termination.
期刊介绍:
Clinical Cancer Research is a journal focusing on groundbreaking research in cancer, specifically in the areas where the laboratory and the clinic intersect. Our primary interest lies in clinical trials that investigate novel treatments, accompanied by research on pharmacology, molecular alterations, and biomarkers that can predict response or resistance to these treatments. Furthermore, we prioritize laboratory and animal studies that explore new drugs and targeted agents with the potential to advance to clinical trials. We also encourage research on targetable mechanisms of cancer development, progression, and metastasis.