{"title":"Targeted Degradation of SOS1 Exhibits Potent Anticancer Activity and Overcomes Resistance in KRAS-Mutant Tumors and BCR-ABL-Positive Leukemia","authors":"Ziwei Luo, Chencen Lin, Chuwei Yu, Changxian Yuan, Wenyong Wu, Xiaowei Xu, Renhong Sun, Yan Jia, yafang wang, Jie Shen, Dingyan Wang, Sinan Wang, Hualiang Jiang, Biao Jiang, Xiaobao Yang, Chengying Xie","doi":"10.1158/0008-5472.can-24-1093","DOIUrl":null,"url":null,"abstract":"SOS1 is an essential guanine nucleotide exchange factor for RAS that also plays a critical role in the activation of the small GTPase RAC mediated by BCR-ABL in leukemogenesis. Despite this, small molecule inhibitors targeting SOS1 have shown limited efficacy in clinical trials for KRAS mutant cancers, and their potential as a therapeutic approach for chronic myeloid leukemia (CML) remains largely unexplored. In this study, we developed a potent SOS1 PROTAC SIAIS562055, which was designed by connecting a CRBN ligand to an analogue of the SOS1 inhibitor BI-3406. SIAIS562055 exhibited sustained degradation of SOS1 and inhibition of downstream ERK pathways, resulting in superior anti-proliferative activity compared to small molecule inhibitors. SIAIS562055 also potentiated the activity of both KRAS inhibitors in KRAS-mutant cancers and ABL inhibitors in BCR-ABL+ CML. In KRAS-mutant xenografts, SIAIS562055 displayed promising antitumor potency as a monotherapy and enhanced ERK inhibition and tumor regression when combined with KRAS inhibitors, overcoming acquired resistance. In CML cells, SIAIS562055 promoted the active uptake of BCR-ABL inhibitors by upregulating the carnitine/organic cation transporter SLC22A4. SIAIS562055 and BCR-ABL inhibitors synergistically enhanced inhibition of ABL phosphorylation and downstream signaling, demonstrating robust antitumor activities in both mouse xenografts and primary CML patient samples. In summary, this study suggests that PROTAC-mediated SOS1 degradation represents an effective therapeutic strategy for treating not only KRAS-mutant cancers but also BCR-ABL-harboring leukemia.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"79 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1093","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SOS1 is an essential guanine nucleotide exchange factor for RAS that also plays a critical role in the activation of the small GTPase RAC mediated by BCR-ABL in leukemogenesis. Despite this, small molecule inhibitors targeting SOS1 have shown limited efficacy in clinical trials for KRAS mutant cancers, and their potential as a therapeutic approach for chronic myeloid leukemia (CML) remains largely unexplored. In this study, we developed a potent SOS1 PROTAC SIAIS562055, which was designed by connecting a CRBN ligand to an analogue of the SOS1 inhibitor BI-3406. SIAIS562055 exhibited sustained degradation of SOS1 and inhibition of downstream ERK pathways, resulting in superior anti-proliferative activity compared to small molecule inhibitors. SIAIS562055 also potentiated the activity of both KRAS inhibitors in KRAS-mutant cancers and ABL inhibitors in BCR-ABL+ CML. In KRAS-mutant xenografts, SIAIS562055 displayed promising antitumor potency as a monotherapy and enhanced ERK inhibition and tumor regression when combined with KRAS inhibitors, overcoming acquired resistance. In CML cells, SIAIS562055 promoted the active uptake of BCR-ABL inhibitors by upregulating the carnitine/organic cation transporter SLC22A4. SIAIS562055 and BCR-ABL inhibitors synergistically enhanced inhibition of ABL phosphorylation and downstream signaling, demonstrating robust antitumor activities in both mouse xenografts and primary CML patient samples. In summary, this study suggests that PROTAC-mediated SOS1 degradation represents an effective therapeutic strategy for treating not only KRAS-mutant cancers but also BCR-ABL-harboring leukemia.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.