Neural Vector Fields for Implicit Surface Representation and Inference

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Edoardo Mello Rella, Ajad Chhatkuli, Ender Konukoglu, Luc Van Gool
{"title":"Neural Vector Fields for Implicit Surface Representation and Inference","authors":"Edoardo Mello Rella, Ajad Chhatkuli, Ender Konukoglu, Luc Van Gool","doi":"10.1007/s11263-024-02251-z","DOIUrl":null,"url":null,"abstract":"<p>Neural implicit fields have recently shown increasing success in representing, learning and analysis of 3D shapes. Signed distance fields and occupancy fields are still the preferred choice of implicit representations with well-studied properties, despite their restriction to closed surfaces. With neural networks, unsigned distance fields as well as several other variations and training principles have been proposed with the goal to represent all classes of shapes. In this paper, we develop a novel and yet a fundamental representation considering unit vectors in 3D space and call it Vector Field (VF). At each point in <span>\\(\\mathbb {R}^3\\)</span>, VF is directed to the closest point on the surface. We theoretically demonstrate that VF can be easily transformed to surface density by computing the flux density. Unlike other standard representations, VF directly encodes an important physical property of the surface, its normal. We further show the advantages of VF representation, in learning open, closed, or multi-layered surfaces. We show that, thanks to the continuity property of the neural optimization with VF, a separate distance field becomes unnecessary for extracting surfaces from the implicit field via Marching Cubes. We compare our method on several datasets including ShapeNet where the proposed new neural implicit field shows superior accuracy in representing any type of shape, outperforming other standard methods. Codes are available at https://github.com/edomel/ImplicitVF.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"66 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02251-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Neural implicit fields have recently shown increasing success in representing, learning and analysis of 3D shapes. Signed distance fields and occupancy fields are still the preferred choice of implicit representations with well-studied properties, despite their restriction to closed surfaces. With neural networks, unsigned distance fields as well as several other variations and training principles have been proposed with the goal to represent all classes of shapes. In this paper, we develop a novel and yet a fundamental representation considering unit vectors in 3D space and call it Vector Field (VF). At each point in \(\mathbb {R}^3\), VF is directed to the closest point on the surface. We theoretically demonstrate that VF can be easily transformed to surface density by computing the flux density. Unlike other standard representations, VF directly encodes an important physical property of the surface, its normal. We further show the advantages of VF representation, in learning open, closed, or multi-layered surfaces. We show that, thanks to the continuity property of the neural optimization with VF, a separate distance field becomes unnecessary for extracting surfaces from the implicit field via Marching Cubes. We compare our method on several datasets including ShapeNet where the proposed new neural implicit field shows superior accuracy in representing any type of shape, outperforming other standard methods. Codes are available at https://github.com/edomel/ImplicitVF.

Abstract Image

用于隐式表面表示和推理的神经向量场
最近,神经隐含场在表示、学习和分析三维形状方面取得了越来越多的成功。有符号距离场和占位场仍然是隐式表示法的首选,尽管它们仅限于封闭曲面,但其特性已得到充分研究。随着神经网络的发展,人们提出了无符号距离场以及其他一些变体和训练原则,旨在表示所有类别的形状。在本文中,我们考虑到三维空间中的单位向量,开发了一种新颖且基本的表示方法,并称之为矢量场(VF)。在 \(\mathbb {R}^3\) 中的每个点,VF 都指向曲面上最近的点。我们从理论上证明,通过计算通量密度,VF 可以很容易地转换为表面密度。与其他标准表示法不同,VF 直接编码了曲面的一个重要物理属性--法线。我们进一步展示了 VF 表示法在学习开放、封闭或多层表面时的优势。我们证明,由于 VF 神经优化的连续性特性,通过行进立方体从隐式场中提取曲面时无需单独的距离场。我们在包括 ShapeNet 在内的多个数据集上对我们的方法进行了比较,结果表明,所提出的新神经隐含场在表示任何类型的形状时都表现出卓越的准确性,优于其他标准方法。代码见 https://github.com/edomel/ImplicitVF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信