{"title":"Gravitational lensing of spherically symmetric black holes in dark matter halos","authors":"Yi-Gao Liu, Chen-Kai Qiao and Jun Tao","doi":"10.1088/1475-7516/2024/10/075","DOIUrl":null,"url":null,"abstract":"The gravitational lensing of supermassive black holes surrounded by dark matter halo has attracted a great number of interests in recent years. However, many studies employed simplified dark matter density models, which makes it very hard to give a precise prediction on the dark matter effects in real astrophysical galaxies. In this work, to more accurately describe the distribution of dark matter in real astrophysical galaxies, we study the gravitational lensing of black holes in astrophysical dark matter halo models (Beta, Burkert, Brownstein, and Moore). The deflection angle is obtained using a generalized Gibbons-Werner approach. The visual angular positions and the Einstein rings are also calculated by adopting the gravitational lens equation. Specifically, we choose the supermassive black holes in Milky Way Galaxy, Andromeda galaxy (M31), Virgo galaxy (M87), and ESO138-G014 galaxy as examples, including the corresponding fitted value of dark matter halos. The results suggest that the dark matter halo described by the Beta model has non-negligible influences on the gravitational deflection angle and gravitational lensing observations. However, the Burkert, Brownstein, and Moore models have relatively small influences on angular position of images and the Einstein ring.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/075","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The gravitational lensing of supermassive black holes surrounded by dark matter halo has attracted a great number of interests in recent years. However, many studies employed simplified dark matter density models, which makes it very hard to give a precise prediction on the dark matter effects in real astrophysical galaxies. In this work, to more accurately describe the distribution of dark matter in real astrophysical galaxies, we study the gravitational lensing of black holes in astrophysical dark matter halo models (Beta, Burkert, Brownstein, and Moore). The deflection angle is obtained using a generalized Gibbons-Werner approach. The visual angular positions and the Einstein rings are also calculated by adopting the gravitational lens equation. Specifically, we choose the supermassive black holes in Milky Way Galaxy, Andromeda galaxy (M31), Virgo galaxy (M87), and ESO138-G014 galaxy as examples, including the corresponding fitted value of dark matter halos. The results suggest that the dark matter halo described by the Beta model has non-negligible influences on the gravitational deflection angle and gravitational lensing observations. However, the Burkert, Brownstein, and Moore models have relatively small influences on angular position of images and the Einstein ring.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.