Yumeng Zhang, Zhikang Wang, Yunzhe Jiang, Dene R. Littler, Mark Gerstein, Anthony W. Purcell, Jamie Rossjohn, Hong-Yu Ou, Jiangning Song
{"title":"Epitope-anchored contrastive transfer learning for paired CD8+ T cell receptor–antigen recognition","authors":"Yumeng Zhang, Zhikang Wang, Yunzhe Jiang, Dene R. Littler, Mark Gerstein, Anthony W. Purcell, Jamie Rossjohn, Hong-Yu Ou, Jiangning Song","doi":"10.1038/s42256-024-00913-8","DOIUrl":null,"url":null,"abstract":"<p>Understanding the mechanisms of T cell antigen recognition that underpin adaptive immune responses is critical for developing vaccines, immunotherapies and treatments against autoimmune diseases. Despite extensive research efforts, accurate prediction of T cell receptor (TCR)–antigen binding pairs remains a great challenge due to the vast diversity and cross-reactivity of TCRs. Here we propose a deep-learning-based framework termed epitope-anchored contrastive transfer learning (EPACT) tailored to paired human CD8<sup>+</sup> TCRs. Harnessing the pretrained representations and co-embeddings of peptide–major histocompatibility complex (pMHC) and TCR, EPACT demonstrated generalizability in predicting binding specificity for unseen epitopes and distinct TCR repertoires. Contrastive learning enabled highly precise predictions for immunodominant epitopes and interpretable analysis of epitope-specific T cells. We applied EPACT to SARS-CoV-2-responsive T cells, and the predicted binding strength aligned well with the surge in spike-specific immune responses after vaccination. We further fine-tuned EPACT on structural data to decipher the residue-level interactions involved in TCR–antigen recognition. EPACT was capable of quantifying interchain distance matrices and identifying contact residues, corroborating the presence of TCR cross-reactivity across multiple tumour-associated antigens. Together, EPACT can serve as a useful artificial intelligence approach with important potential in practical applications and contribute towards the development of TCR-based immunotherapies.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"27 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00913-8","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the mechanisms of T cell antigen recognition that underpin adaptive immune responses is critical for developing vaccines, immunotherapies and treatments against autoimmune diseases. Despite extensive research efforts, accurate prediction of T cell receptor (TCR)–antigen binding pairs remains a great challenge due to the vast diversity and cross-reactivity of TCRs. Here we propose a deep-learning-based framework termed epitope-anchored contrastive transfer learning (EPACT) tailored to paired human CD8+ TCRs. Harnessing the pretrained representations and co-embeddings of peptide–major histocompatibility complex (pMHC) and TCR, EPACT demonstrated generalizability in predicting binding specificity for unseen epitopes and distinct TCR repertoires. Contrastive learning enabled highly precise predictions for immunodominant epitopes and interpretable analysis of epitope-specific T cells. We applied EPACT to SARS-CoV-2-responsive T cells, and the predicted binding strength aligned well with the surge in spike-specific immune responses after vaccination. We further fine-tuned EPACT on structural data to decipher the residue-level interactions involved in TCR–antigen recognition. EPACT was capable of quantifying interchain distance matrices and identifying contact residues, corroborating the presence of TCR cross-reactivity across multiple tumour-associated antigens. Together, EPACT can serve as a useful artificial intelligence approach with important potential in practical applications and contribute towards the development of TCR-based immunotherapies.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.