Random Natural Gradient

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-10-22 DOI:10.22331/q-2024-10-22-1503
Ioannis Kolotouros, Petros Wallden
{"title":"Random Natural Gradient","authors":"Ioannis Kolotouros, Petros Wallden","doi":"10.22331/q-2024-10-22-1503","DOIUrl":null,"url":null,"abstract":"Hybrid quantum-classical algorithms appear to be the most promising approach for near-term quantum applications. An important bottleneck is the classical optimization loop, where the multiple local minima and the emergence of barren plateaux make these approaches less appealing. To improve the optimization the Quantum Natural Gradient (QNG) method [15] was introduced – a method that uses information about the local geometry of the quantum state-space. While the QNG-based optimization is promising, in each step it requires more quantum resources, since to compute the QNG one requires $O(m^2)$ quantum state preparations, where $m$ is the number of parameters in the parameterized circuit. In this work we propose two methods that reduce the resources/state preparations required for QNG, while keeping the advantages and performance of the QNG-based optimization. Specifically, we first introduce the Random Natural Gradient (RNG) that uses random measurements and the classical Fisher information matrix (as opposed to the quantum Fisher information used in QNG). The essential quantum resources reduce to linear $O(m)$ and thus offer a quadratic \"speed-up\", while in our numerical simulations it matches QNG in terms of accuracy. We give some theoretical arguments for RNG and then benchmark the method with the QNG on both classical and quantum problems. Secondly, inspired by stochastic-coordinate methods, we propose a novel approximation to the QNG which we call Stochastic-Coordinate Quantum Natural Gradient that optimizes only a small (randomly sampled) fraction of the total parameters at each iteration. This method also performs equally well in our benchmarks, while it uses fewer resources than the QNG.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"88 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-22-1503","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid quantum-classical algorithms appear to be the most promising approach for near-term quantum applications. An important bottleneck is the classical optimization loop, where the multiple local minima and the emergence of barren plateaux make these approaches less appealing. To improve the optimization the Quantum Natural Gradient (QNG) method [15] was introduced – a method that uses information about the local geometry of the quantum state-space. While the QNG-based optimization is promising, in each step it requires more quantum resources, since to compute the QNG one requires $O(m^2)$ quantum state preparations, where $m$ is the number of parameters in the parameterized circuit. In this work we propose two methods that reduce the resources/state preparations required for QNG, while keeping the advantages and performance of the QNG-based optimization. Specifically, we first introduce the Random Natural Gradient (RNG) that uses random measurements and the classical Fisher information matrix (as opposed to the quantum Fisher information used in QNG). The essential quantum resources reduce to linear $O(m)$ and thus offer a quadratic "speed-up", while in our numerical simulations it matches QNG in terms of accuracy. We give some theoretical arguments for RNG and then benchmark the method with the QNG on both classical and quantum problems. Secondly, inspired by stochastic-coordinate methods, we propose a novel approximation to the QNG which we call Stochastic-Coordinate Quantum Natural Gradient that optimizes only a small (randomly sampled) fraction of the total parameters at each iteration. This method also performs equally well in our benchmarks, while it uses fewer resources than the QNG.
随机自然渐变
量子-经典混合算法似乎是近期量子应用中最有前途的方法。一个重要的瓶颈是经典优化环路,在这个环路中,多个局部最小值和贫瘠高原的出现使这些方法不那么吸引人。为了改进优化,引入了量子自然梯度法(QNG)[15]--一种利用量子态空间局部几何信息的方法。虽然基于 QNG 的优化很有前景,但每一步都需要更多量子资源,因为计算 QNG 需要 $O(m^2)$ 量子状态准备,其中 $m$ 是参数化电路中的参数数。在这项工作中,我们提出了两种方法,既能减少 QNG 所需的资源/状态准备,又能保持基于 QNG 优化的优势和性能。具体来说,我们首先引入了随机自然梯度(RNG),它使用随机测量和经典费雪信息矩阵(而非 QNG 中使用的量子费雪信息)。必要的量子资源减少到线性 $O(m)$,因此提供了二次 "提速",而在我们的数值模拟中,它在精度方面与 QNG 不相上下。我们给出了 RNG 的一些理论依据,然后将该方法与 QNG 在经典和量子问题上进行了比较。其次,受随机坐标方法的启发,我们提出了一种新的 QNG 近似方法,我们称之为随机坐标量子自然梯度法,它在每次迭代时只优化总参数的一小部分(随机抽样)。这种方法在我们的基准测试中同样表现出色,而且比 QNG 使用更少的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信