{"title":"Discrete-time general fractional calculus","authors":"Alexandra V. Antoniouk, Anatoly N. Kochubei","doi":"10.1007/s13540-024-00350-9","DOIUrl":null,"url":null,"abstract":"<p>In general fractional calculus (GFC), the counterpart of the fractional time derivative is a differential-convolution operator whose integral kernel satisfies some additional conditions, under which the Cauchy problem for the corresponding time-fractional equation is not only well-posed, but has properties similar to those of classical evolution equations of mathematical physics. In this work, we develop the GFC approach for the discrete-time fractional calculus. In particular, we define within GFC the appropriate resolvent families and use them to solve the discrete-time Cauchy problem with an appropriate analog of the Caputo fractional derivative.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00350-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In general fractional calculus (GFC), the counterpart of the fractional time derivative is a differential-convolution operator whose integral kernel satisfies some additional conditions, under which the Cauchy problem for the corresponding time-fractional equation is not only well-posed, but has properties similar to those of classical evolution equations of mathematical physics. In this work, we develop the GFC approach for the discrete-time fractional calculus. In particular, we define within GFC the appropriate resolvent families and use them to solve the discrete-time Cauchy problem with an appropriate analog of the Caputo fractional derivative.