On the computation of the Mittag-Leffler function of fractional powers of accretive operators

IF 2.5 2区 数学 Q1 MATHEMATICS
Eleonora Denich, Paolo Novati
{"title":"On the computation of the Mittag-Leffler function of fractional powers of accretive operators","authors":"Eleonora Denich, Paolo Novati","doi":"10.1007/s13540-024-00349-2","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the computation of the two parameter Mittag-Leffler function of operators by exploiting its Stieltjes integral representation and then by using a single exponential transform together with the sinc rule. Whenever the parameters of the function do not allow this representation, we resort to the Dunford-Taylor one. The error analysis is kept in the framework of unbounded accretive operators in order to make it a useful tool for the solution of fractional differential equations. The theory is also used to design a rational Krylov method.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"44 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00349-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the computation of the two parameter Mittag-Leffler function of operators by exploiting its Stieltjes integral representation and then by using a single exponential transform together with the sinc rule. Whenever the parameters of the function do not allow this representation, we resort to the Dunford-Taylor one. The error analysis is kept in the framework of unbounded accretive operators in order to make it a useful tool for the solution of fractional differential equations. The theory is also used to design a rational Krylov method.

Abstract Image

关于分数幂增量算子的米塔格-勒弗勒函数的计算
本文通过利用运算符的斯蒂尔杰斯积分表示法,然后使用单指数变换和 sinc 规则,来计算双参数米塔格-勒弗勒函数。每当函数参数不允许使用这种表示法时,我们就采用 Dunford-Taylor 表示法。误差分析保持在无界增量算子的框架内,以便使其成为求解分数微分方程的有用工具。该理论还用于设计一种有理克雷洛夫方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信