On the computation of the Mittag-Leffler function of fractional powers of accretive operators

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eleonora Denich, Paolo Novati
{"title":"On the computation of the Mittag-Leffler function of fractional powers of accretive operators","authors":"Eleonora Denich, Paolo Novati","doi":"10.1007/s13540-024-00349-2","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the computation of the two parameter Mittag-Leffler function of operators by exploiting its Stieltjes integral representation and then by using a single exponential transform together with the sinc rule. Whenever the parameters of the function do not allow this representation, we resort to the Dunford-Taylor one. The error analysis is kept in the framework of unbounded accretive operators in order to make it a useful tool for the solution of fractional differential equations. The theory is also used to design a rational Krylov method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00349-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the computation of the two parameter Mittag-Leffler function of operators by exploiting its Stieltjes integral representation and then by using a single exponential transform together with the sinc rule. Whenever the parameters of the function do not allow this representation, we resort to the Dunford-Taylor one. The error analysis is kept in the framework of unbounded accretive operators in order to make it a useful tool for the solution of fractional differential equations. The theory is also used to design a rational Krylov method.

Abstract Image

关于分数幂增量算子的米塔格-勒弗勒函数的计算
本文通过利用运算符的斯蒂尔杰斯积分表示法,然后使用单指数变换和 sinc 规则,来计算双参数米塔格-勒弗勒函数。每当函数参数不允许使用这种表示法时,我们就采用 Dunford-Taylor 表示法。误差分析保持在无界增量算子的框架内,以便使其成为求解分数微分方程的有用工具。该理论还用于设计一种有理克雷洛夫方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信