Long-Lived Charge Carrier Photogeneration in a Cooperative Supramolecular Double-Cable Polymer

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jan Joseph, José Augusto Berrocal, Nicolás M. Casellas, Dirk M. Guldi, Tomás Torres, Miguel García-Iglesias
{"title":"Long-Lived Charge Carrier Photogeneration in a Cooperative Supramolecular Double-Cable Polymer","authors":"Jan Joseph, José Augusto Berrocal, Nicolás M. Casellas, Dirk M. Guldi, Tomás Torres, Miguel García-Iglesias","doi":"10.1021/jacs.4c09637","DOIUrl":null,"url":null,"abstract":"A newly designed C<sub>3</sub>-symmetric disc-shaped chromophore, <b>BTT(NDI)<sub>3</sub></b>, features electron accepting naphthalene diimides linked to an electron donor BTT core. <b>BTT(NDI)<sub>3</sub></b> self-assembles in apolar solvents into highly ordered, chiral supramolecular fibers through π–π and 3-fold hydrogen-bonding interactions. This leads to a cooperative formation of plane-to-plane stacking of BTTs and J-aggregation of the outer NDIs. Such a structure ensures high charge mobility. Only photoexcitation of BTT in the <b>BTT(NDI)<sub>3</sub></b> polymers triggers a unidirectional electron transfer from BTT to NDI and results in (BTT<sup>•+</sup>-NDI<sup>•–</sup>) lifetimes that are by up to 3 orders of magnitude longer compared to (NDI<sup>•+</sup>-NDI<sup>•–</sup>) that is formed upon NDI photoexcitation. A multiphasic decay implies ambipolar pathways for charge carriers, that is, electron and hole delocalization along the respective BTT and NDI stacks. Our supramolecular approach offers potential for developing functional supramolecular polymers with continuous pathways for electrons and holes and, in turn, minimizing charge recombination losses in organic photovoltaic devices.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c09637","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A newly designed C3-symmetric disc-shaped chromophore, BTT(NDI)3, features electron accepting naphthalene diimides linked to an electron donor BTT core. BTT(NDI)3 self-assembles in apolar solvents into highly ordered, chiral supramolecular fibers through π–π and 3-fold hydrogen-bonding interactions. This leads to a cooperative formation of plane-to-plane stacking of BTTs and J-aggregation of the outer NDIs. Such a structure ensures high charge mobility. Only photoexcitation of BTT in the BTT(NDI)3 polymers triggers a unidirectional electron transfer from BTT to NDI and results in (BTT•+-NDI•–) lifetimes that are by up to 3 orders of magnitude longer compared to (NDI•+-NDI•–) that is formed upon NDI photoexcitation. A multiphasic decay implies ambipolar pathways for charge carriers, that is, electron and hole delocalization along the respective BTT and NDI stacks. Our supramolecular approach offers potential for developing functional supramolecular polymers with continuous pathways for electrons and holes and, in turn, minimizing charge recombination losses in organic photovoltaic devices.

Abstract Image

合作型超分子双缆聚合物中的长寿命电荷载流子光生成
一种新设计的 C3 对称圆盘形发色团 BTT(NDI)3,具有与电子供体 BTT 核心相连的电子受体萘二亚胺。BTT(NDI)3 在无极性溶剂中通过 π-π 和 3 倍氢键相互作用自组装成高度有序的手性超分子纤维。这导致 BTT 平面到平面堆叠和外层 NDI 的 J- 聚集的协同形成。这种结构确保了高电荷迁移率。只有光激发 BTT(NDI)3 聚合物中的 BTT 才会引发从 BTT 到 NDI 的单向电子转移,从而导致 (BTT-+-NDI--) 寿命比 NDI 光激发时形成的 (NDI-+-NDI--) 寿命长达 3 个数量级。多相衰变意味着电荷载流子的两极通路,即电子和空穴沿着各自的 BTT 和 NDI 叠层脱ocal。我们的超分子方法为开发具有电子和空穴连续通路的功能性超分子聚合物提供了潜力,进而可将有机光伏设备中的电荷重组损耗降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信