Efficient Pix2Vox++ for 3D Cardiac Reconstruction from 2D echo views.

David Stojanovski, Uxio Hermida, Marica Muffoletto, Pablo Lamata, Arian Beqiri, Alberto Gomez
{"title":"Efficient Pix2Vox++ for 3D Cardiac Reconstruction from 2D echo views.","authors":"David Stojanovski, Uxio Hermida, Marica Muffoletto, Pablo Lamata, Arian Beqiri, Alberto Gomez","doi":"10.1007/978-3-031-16902-1_9","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate geometric quantification of the human heart is a key step in the diagnosis of numerous cardiac diseases, and in the management of cardiac patients. Ultrasound imaging is the primary modality for cardiac imaging, however acquisition requires high operator skill, and its interpretation and analysis is difficult due to artifacts. Reconstructing cardiac anatomy in 3D can enable discovery of new biomarkers and make imaging less dependent on operator expertise, however most ultrasound systems only have 2D imaging capabilities. We propose both a simple alteration to the Pix2Vox++ networks for a sizeable reduction in memory usage and computational complexity, and a pipeline to perform reconstruction of 3D anatomy from 2D standard cardiac views, effectively enabling 3D anatomical reconstruction from limited 2D data. We evaluate our pipeline using synthetically generated data achieving accurate 3D whole-heart reconstructions (peak intersection over union score > 0.88) from just two standard anatomical 2D views of the heart. We also show preliminary results using real echo images.</p>","PeriodicalId":520254,"journal":{"name":"Simplifying medical ultrasound : third International Workshop, ASMUS 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings. ASMUS (Workshop) (3rd : 2022 : Singapore)","volume":"13565 ","pages":"86-95"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simplifying medical ultrasound : third International Workshop, ASMUS 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings. ASMUS (Workshop) (3rd : 2022 : Singapore)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-16902-1_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate geometric quantification of the human heart is a key step in the diagnosis of numerous cardiac diseases, and in the management of cardiac patients. Ultrasound imaging is the primary modality for cardiac imaging, however acquisition requires high operator skill, and its interpretation and analysis is difficult due to artifacts. Reconstructing cardiac anatomy in 3D can enable discovery of new biomarkers and make imaging less dependent on operator expertise, however most ultrasound systems only have 2D imaging capabilities. We propose both a simple alteration to the Pix2Vox++ networks for a sizeable reduction in memory usage and computational complexity, and a pipeline to perform reconstruction of 3D anatomy from 2D standard cardiac views, effectively enabling 3D anatomical reconstruction from limited 2D data. We evaluate our pipeline using synthetically generated data achieving accurate 3D whole-heart reconstructions (peak intersection over union score > 0.88) from just two standard anatomical 2D views of the heart. We also show preliminary results using real echo images.

高效 Pix2Vox++ 从二维回声视图进行三维心脏重建
对人体心脏进行精确的几何量化是诊断多种心脏疾病和治疗心脏病患者的关键一步。超声波成像是心脏成像的主要方式,但超声波成像的获取对操作者的技术要求很高,而且由于伪影的存在,超声波成像的解释和分析也很困难。以三维方式重建心脏解剖结构可以发现新的生物标志物,并减少成像对操作者专业知识的依赖,但大多数超声系统仅具有二维成像功能。我们建议对 Pix2Vox++ 网络进行简单修改,以大幅减少内存使用量和计算复杂性,并建立一个从二维标准心脏视图重建三维解剖结构的管道,从而有效地从有限的二维数据中重建三维解剖结构。我们使用合成生成的数据对我们的管道进行了评估,仅从两个标准的心脏二维解剖视图中就实现了精确的三维全心重建(峰值相交超过结合分数 > 0.88)。我们还展示了使用真实回波图像的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信