Echo from noise: synthetic ultrasound image generation using diffusion models for real image segmentation.

David Stojanovski, Uxio Hermida, Pablo Lamata, Arian Beqiri, Alberto Gomez
{"title":"Echo from noise: synthetic ultrasound image generation using diffusion models for real image segmentation.","authors":"David Stojanovski, Uxio Hermida, Pablo Lamata, Arian Beqiri, Alberto Gomez","doi":"10.1007/978-3-031-44521-7_4","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a novel pipeline for the generation of synthetic ultrasound images via Denoising Diffusion Probabilistic Models (DDPMs) guided by cardiac semantic label maps. We show that these synthetic images can serve as a viable substitute for real data in the training of deep-learning models for ultrasound image analysis tasks such as cardiac segmentation. To demonstrate the effectiveness of this approach, we generated synthetic 2D echocardiograms and trained a neural network for segmenting the left ventricle and left atrium. The performance of the network trained on exclusively synthetic images was evaluated on an unseen dataset of real images and yielded mean Dice scores of 88.6 <i>±</i>4.91, 91.9 <i>±</i>4.22, 85.2 <i>±</i>4.83 % for left ventricular endocardium, epicardium and left atrial segmentation respectively. This represents a relative increase of 9.2, 3.3 and 13.9 % in Dice scores compared to the previous state-of-the-art. The proposed pipeline has potential for application to a wide range of other tasks across various medical imaging modalities.</p>","PeriodicalId":520253,"journal":{"name":"Simplifying medical ultrasound : 4th International Workshop, ASMUS 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ASMUS (Workshop) (4th : 2023 : Vancouver, B.C. ; Online)","volume":"14337 ","pages":"34-43"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simplifying medical ultrasound : 4th International Workshop, ASMUS 2023, held in conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings. ASMUS (Workshop) (4th : 2023 : Vancouver, B.C. ; Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-44521-7_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel pipeline for the generation of synthetic ultrasound images via Denoising Diffusion Probabilistic Models (DDPMs) guided by cardiac semantic label maps. We show that these synthetic images can serve as a viable substitute for real data in the training of deep-learning models for ultrasound image analysis tasks such as cardiac segmentation. To demonstrate the effectiveness of this approach, we generated synthetic 2D echocardiograms and trained a neural network for segmenting the left ventricle and left atrium. The performance of the network trained on exclusively synthetic images was evaluated on an unseen dataset of real images and yielded mean Dice scores of 88.6 ±4.91, 91.9 ±4.22, 85.2 ±4.83 % for left ventricular endocardium, epicardium and left atrial segmentation respectively. This represents a relative increase of 9.2, 3.3 and 13.9 % in Dice scores compared to the previous state-of-the-art. The proposed pipeline has potential for application to a wide range of other tasks across various medical imaging modalities.

噪音中的回声:利用扩散模型生成合成超声波图像,用于实际图像分割。
我们提出了一种新方法,通过心脏语义标签图引导的去噪扩散概率模型(DDPM)生成合成超声图像。我们的研究表明,这些合成图像可以替代真实数据,用于超声图像分析任务(如心脏分割)的深度学习模型训练。为了证明这种方法的有效性,我们生成了合成的二维超声心动图,并训练了一个神经网络来分割左心室和左心房。在一个未见过的真实图像数据集上评估了在完全合成图像上训练的网络的性能,结果显示,左心室心内膜、心外膜和左心房分割的平均 Dice 分数分别为 88.6 ±4.91%、91.9 ±4.22%、85.2 ±4.83%。与之前的先进技术相比,Dice 评分分别提高了 9.2%、3.3% 和 13.9%。建议的管道有潜力应用于各种医学成像模式的其他任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信