Suspended Tissue Open Microfluidic Patterning (STOMP).

Amanda J Haack, Lauren G Brown, Alex J Goldstein, Priti Mulimani, Jean Berthier, Asha R Viswanathan, Irina Kopyeva, Jamison M Whitten, Ariel Lin, Serena H Nguyen, Thomas P Leahy, Ella E Bouker, Ruby M Padgett, Natalie A Mazzawi, Jodie C Tokihiro, Ross C Bretherton, Aaliyah Wu, Stephen J Tapscott, Cole A DeForest, Tracy E Popowics, Erwin Berthier, Nathan J Sniadecki, Ashleigh B Theberge
{"title":"Suspended Tissue Open Microfluidic Patterning (STOMP).","authors":"Amanda J Haack, Lauren G Brown, Alex J Goldstein, Priti Mulimani, Jean Berthier, Asha R Viswanathan, Irina Kopyeva, Jamison M Whitten, Ariel Lin, Serena H Nguyen, Thomas P Leahy, Ella E Bouker, Ruby M Padgett, Natalie A Mazzawi, Jodie C Tokihiro, Ross C Bretherton, Aaliyah Wu, Stephen J Tapscott, Cole A DeForest, Tracy E Popowics, Erwin Berthier, Nathan J Sniadecki, Ashleigh B Theberge","doi":"10.1101/2024.10.04.616662","DOIUrl":null,"url":null,"abstract":"<p><p>Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multi-regional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced 4D materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.04.616662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multi-regional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced 4D materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.

悬浮组织开放式微流控芯片(STOMP)。
悬浮在支柱之间的细胞负载水凝胶构建体是组织结构和生理学建模的有力工具,但目前的制造技术往往限制了它们的均匀组成。相比之下,组织的性质复杂,细胞类型和细胞外基质的空间排列各不相同。因此,我们提出了悬浮组织开放式微流体制图(STOMP),它利用可移动的开放式微流体制图通道,在单个悬浮组织上制图多个空间区域。STOMP 平台包含沿开放通道的毛细管针刺功能,可控制流体前沿,从而将多个细胞和细胞外基质前体移入一个组织中。我们已经利用这种技术,使用各种原生和合成细胞外基质(包括纤维蛋白、胶原蛋白和聚(乙二醇)),将具有多种区域成分的悬浮组织图案化。在这里,我们展示了 STOMP 对功能性心脏组织中的纤维化区域和牙周组织中的骨韧带交界处进行建模。此外,STOMP 平台还可以进行定制,以实现悬浮核心和更多空间配置的图案化,从而提高其在复杂组织建模中的实用性。STOMP 是一种用于生成悬浮组织模型的多功能技术,可加强对细胞和水凝胶成分的控制,从而在悬浮组织中建立界面组织区域模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信