Effect of model space priors on statistical inference with model uncertainty.

The New England Journal of Statistics in Data Science Pub Date : 2023-09-01 Epub Date: 2022-11-16
Anupreet Porwal, Adrian E Raftery
{"title":"Effect of model space priors on statistical inference with model uncertainty.","authors":"Anupreet Porwal, Adrian E Raftery","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian model averaging (BMA) provides a coherent way to account for model uncertainty in statistical inference tasks. BMA requires specification of model space priors and parameter space priors. In this article we focus on comparing different model space priors in presence of model uncertainty. We consider eight reference model space priors used in the literature and three adaptive parameter priors recommended by Porwal and Raftery [37]. We assess the performance of these combinations of prior specifications for variable selection in linear regression models for the statistical tasks of parameter estimation, interval estimation, inference, point and interval prediction. We carry out an extensive simulation study based on 14 real datasets representing a range of situations encountered in practice. We found that beta-binomial model space priors specified in terms of the prior probability of model size performed best on average across various statistical tasks and datasets, outperforming priors that were uniform across models. Recently proposed complexity priors performed relatively poorly.</p>","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"1 2","pages":"149-158"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian model averaging (BMA) provides a coherent way to account for model uncertainty in statistical inference tasks. BMA requires specification of model space priors and parameter space priors. In this article we focus on comparing different model space priors in presence of model uncertainty. We consider eight reference model space priors used in the literature and three adaptive parameter priors recommended by Porwal and Raftery [37]. We assess the performance of these combinations of prior specifications for variable selection in linear regression models for the statistical tasks of parameter estimation, interval estimation, inference, point and interval prediction. We carry out an extensive simulation study based on 14 real datasets representing a range of situations encountered in practice. We found that beta-binomial model space priors specified in terms of the prior probability of model size performed best on average across various statistical tasks and datasets, outperforming priors that were uniform across models. Recently proposed complexity priors performed relatively poorly.

模型空间先验对模型不确定性统计推断的影响。
贝叶斯模型平均法(BMA)为统计推断任务中的模型不确定性提供了一种一致的解释方法。贝叶斯模型平均法需要指定模型空间先验和参数空间先验。在本文中,我们将重点比较存在模型不确定性时的不同模型空间先验。我们考虑了文献中使用的八个参考模型空间先验和 Porwal 和 Raftery [37] 推荐的三个自适应参数先验。我们评估了这些用于线性回归模型变量选择的先验规范组合在参数估计、区间估计、推理、点预测和区间预测等统计任务中的性能。我们基于 14 个真实数据集进行了广泛的模拟研究,这些数据集代表了实践中遇到的各种情况。我们发现,在各种统计任务和数据集中,根据模型大小的先验概率指定的 beta-二叉模型空间先验平均表现最佳,优于统一模型先验。最近提出的复杂性先验表现相对较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信