Isomerization enhanced fluorescence brightness of benzobisthiadiazole-based NIR-II fluorophores for highly efficient fluorescence imaging: A theoretical perspective.

Yuying Du, Yujin Zhang, Yulong Xu, Meina Zhang, Jiancai Leng, Wei Hu
{"title":"Isomerization enhanced fluorescence brightness of benzobisthiadiazole-based NIR-II fluorophores for highly efficient fluorescence imaging: A theoretical perspective.","authors":"Yuying Du, Yujin Zhang, Yulong Xu, Meina Zhang, Jiancai Leng, Wei Hu","doi":"10.1016/j.saa.2024.125282","DOIUrl":null,"url":null,"abstract":"<p><p>As a cutting-edge technique, fluorescence imaging in the second near-infrared window (NIR-II) is vital for both biomedical research and clinical applications. However, its intravital imaging capacity has been restricted by the extremely limited brightness of NIR-II fluorophores. To address this challenge, we elucidated the inner mechanism of constructing high-performance NIR-II chromophores based on molecular isomer engineering from detailed computational investigations. Herein, three pairs of cis-trans isomers (cis-1, 2, 3 and trans-1, 2, 3) are designed by attaching amino, methoxyl and nitro moieties to different positions on the donor-acceptor-donor molecular skeleton with benzobisthiadiazole as the acceptor and triphenylamine as the donor. All the compounds feature efficient NIR-II emission ranging in 1000-1164 nm, and the photophysical characterizations are regulated by molecular isomer manipulation. Interestingly, fluorescence quantum yields of cis-isomers are higher than those of their trans-counterparts. These enhancements can be attributed to the significant reduction in non-radiative transition, as evidenced by the non-adiabatic excitation energy, non-adiabatic electron coupling and electron-vibration coupling. Meanwhile, fluorophores with nitro terminal group exhibit superior performance facilitated by the prominently intramolecular charge transfer. As a result, cis-3 achieves an optimal brightness maxima of 196.36 M<sup>-1</sup> cm<sup>-1</sup> at 632 nm. Notably, the energy gap and the hole-electron related H index are respectively identified as strongly relevant to the emission wavelength and brightness, making them capable of evaluating the feasibility of fluorophores as effective NIR-II candidates. These findings highlight the correlations between molecular geometry and luminescent properties, which will inspire more insights into the development of highly efficient NIR-II fluorophores through rational isomer engineering for biomedical applications.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"326 ","pages":"125282"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a cutting-edge technique, fluorescence imaging in the second near-infrared window (NIR-II) is vital for both biomedical research and clinical applications. However, its intravital imaging capacity has been restricted by the extremely limited brightness of NIR-II fluorophores. To address this challenge, we elucidated the inner mechanism of constructing high-performance NIR-II chromophores based on molecular isomer engineering from detailed computational investigations. Herein, three pairs of cis-trans isomers (cis-1, 2, 3 and trans-1, 2, 3) are designed by attaching amino, methoxyl and nitro moieties to different positions on the donor-acceptor-donor molecular skeleton with benzobisthiadiazole as the acceptor and triphenylamine as the donor. All the compounds feature efficient NIR-II emission ranging in 1000-1164 nm, and the photophysical characterizations are regulated by molecular isomer manipulation. Interestingly, fluorescence quantum yields of cis-isomers are higher than those of their trans-counterparts. These enhancements can be attributed to the significant reduction in non-radiative transition, as evidenced by the non-adiabatic excitation energy, non-adiabatic electron coupling and electron-vibration coupling. Meanwhile, fluorophores with nitro terminal group exhibit superior performance facilitated by the prominently intramolecular charge transfer. As a result, cis-3 achieves an optimal brightness maxima of 196.36 M-1 cm-1 at 632 nm. Notably, the energy gap and the hole-electron related H index are respectively identified as strongly relevant to the emission wavelength and brightness, making them capable of evaluating the feasibility of fluorophores as effective NIR-II candidates. These findings highlight the correlations between molecular geometry and luminescent properties, which will inspire more insights into the development of highly efficient NIR-II fluorophores through rational isomer engineering for biomedical applications.

用于高效荧光成像的基于苯并二噻二唑的 NIR-II 荧光团的异构化增强荧光亮度:理论视角。
作为一项前沿技术,第二近红外窗口(NIR-II)荧光成像对于生物医学研究和临床应用都至关重要。然而,由于 NIR-II 荧光团的亮度极其有限,其体内成像能力一直受到限制。为了应对这一挑战,我们通过详细的计算研究,阐明了基于分子异构体工程构建高性能 NIR-II 发色团的内在机理。在这里,我们以苯并二噻二唑为受体,三苯胺为供体,通过在供体-受体-受体分子骨架的不同位置上连接氨基、甲氧基和硝基,设计出了三对顺反异构体(顺-1, 2, 3 和反-1, 2, 3)。所有化合物都具有 1000-1164 纳米范围内的高效近红外-II 发射,其光物理特性受分子异构体操作的调节。有趣的是,顺式异构体的荧光量子产率高于反式异构体。这些提高可归因于非辐射转变的显著减少,非绝热激发能量、非绝热电子耦合和电子振动耦合都证明了这一点。同时,带有硝基末端基团的荧光团由于分子内电荷转移显著而表现出更优越的性能。因此,顺式-3 在 632 纳米波长处达到了 196.36 M-1 cm-1 的最佳亮度最大值。值得注意的是,能隙和与空穴电子相关的 H 指数分别被确定为与发射波长和亮度密切相关,因此它们能够评估荧光团作为有效的近红外-II 候选物的可行性。这些发现凸显了分子几何形状与发光特性之间的相关性,这将启发人们更深入地了解如何通过合理的异构体工程开发高效的近红外-II荧光团,以应用于生物医学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信