Massively parallel reporter assays identify enhancer elements in oesophageal Adenocarcinoma.

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
NAR cancer Pub Date : 2024-10-16 eCollection Date: 2024-12-01 DOI:10.1093/narcan/zcae041
Shen-Hsi Yang, Ibrahim Ahmed, Yaoyong Li, Christopher W Bleaney, Andrew D Sharrocks
{"title":"Massively parallel reporter assays identify enhancer elements in oesophageal Adenocarcinoma.","authors":"Shen-Hsi Yang, Ibrahim Ahmed, Yaoyong Li, Christopher W Bleaney, Andrew D Sharrocks","doi":"10.1093/narcan/zcae041","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a disease underpinned by aberrant gene expression. Enhancers are regulatory elements that play a major role in transcriptional control and changes in active enhancer function are likely critical in the pathogenesis of oesophageal adenocarcinoma (OAC). Here, we utilise STARR-seq to profile the genome-wide enhancer landscape in OAC and identify hundreds of high-confidence enhancer elements. These regions are enriched in enhancer-associated chromatin marks, are actively transcribed and exhibit high levels of associated gene activity in OAC cells. These characteristics are maintained in human patient samples, demonstrating their disease relevance. This relevance is further underlined by their responsiveness to oncogenic ERBB2 inhibition and increased activity compared to the pre-cancerous Barrett's state. Mechanistically, these enhancers are linked to the core OAC transcriptional network and in particular KLF5 binding is associated with high level activity, providing further support for a role of this transcription factor in defining the OAC transcriptome. Our results therefore uncover a set of enhancer elements with physiological significance, that widen our understanding of the molecular alterations in OAC and point to mechanisms through which response to targeted therapy may occur.</p>","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcae041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is a disease underpinned by aberrant gene expression. Enhancers are regulatory elements that play a major role in transcriptional control and changes in active enhancer function are likely critical in the pathogenesis of oesophageal adenocarcinoma (OAC). Here, we utilise STARR-seq to profile the genome-wide enhancer landscape in OAC and identify hundreds of high-confidence enhancer elements. These regions are enriched in enhancer-associated chromatin marks, are actively transcribed and exhibit high levels of associated gene activity in OAC cells. These characteristics are maintained in human patient samples, demonstrating their disease relevance. This relevance is further underlined by their responsiveness to oncogenic ERBB2 inhibition and increased activity compared to the pre-cancerous Barrett's state. Mechanistically, these enhancers are linked to the core OAC transcriptional network and in particular KLF5 binding is associated with high level activity, providing further support for a role of this transcription factor in defining the OAC transcriptome. Our results therefore uncover a set of enhancer elements with physiological significance, that widen our understanding of the molecular alterations in OAC and point to mechanisms through which response to targeted therapy may occur.

大规模并行报告实验确定食管腺癌中的增强子元素
癌症是一种以基因表达异常为基础的疾病。增强子是在转录控制中发挥重要作用的调控元件,活性增强子功能的变化可能是食管腺癌(OAC)发病机制的关键。在这里,我们利用 STARR-seq 分析了 OAC 的全基因组增强子图谱,并鉴定了数百个高置信度的增强子元件。这些区域富含增强子相关染色质标记,转录活跃,并在 OAC 细胞中表现出高水平的相关基因活性。这些特征在人类患者样本中得以保留,证明了它们与疾病的相关性。与癌前巴雷特状态相比,这些增强子对致癌ERBB2抑制的反应性和活性的增加进一步强调了这种相关性。从机理上讲,这些增强子与核心 OAC 转录网络有关,尤其是 KLF5 的结合与高水平的活性有关,进一步支持了该转录因子在定义 OAC 转录组中的作用。因此,我们的研究结果发现了一组具有生理意义的增强子元件,它们拓宽了我们对 OAC 分子改变的理解,并指出了靶向治疗可能产生反应的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信