{"title":"MitoSort: Robust Demultiplexing of Pooled Single-cell Genomics Data Using Endogenous Mitochondrial Variants.","authors":"Zhongjie Tang, Weixing Zhang, Peiyu Shi, Sijun Li, Xinhui Li, Yueming Li, Yicong Xu, Yaqing Shu, Zheng Hu, Jin Xu","doi":"10.1093/gpbjnl/qzae073","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplexing across donors has emerged as a popular strategy to increase throughput, reduce costs, overcome technical batch effects, and improve doublet detection in single-cell genomic studies. To eliminate additional experimental steps, endogenous nuclear genome variants are used for demultiplexing pooled single-cell RNA sequencing (scRNA-seq) data by several computational tools. However, these tools have limitations when applied to single-cell sequencing methods that do not cover nuclear genomic regions well, such as single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq). Here, we demonstrate that mitochondrial germline variants are an alternative, robust, and computationally efficient endogenous barcode for sample demultiplexing. We propose MitoSort, a tool that uses mitochondrial germline variants to assign cells to their donor of origin and identify cross-genotype doublets in single-cell genomics datasets. We evaluate its performance by using in silico pooled mitochondrial scATAC-seq (mtscATAC-seq) libraries and experimentally multiplexed data with cell hashtags. MitoSort achieves high accuracy and efficiency in genotype clustering and doublet detection for mtscATAC-seq data, addressing the limitations of current computational techniques tailored for scRNA-seq data. Moreover, MitoSort exhibits versatility and can be applied to various single-cell sequencing approaches beyond mtscATAC-seq, provided the mitochondrial variants are reliably detected. Furthermore, we demonstrate the application of MitoSort in a case study where B cells from eight donors were pooled and assayed by single-cell multi-omics sequencing. Altogether, our results demonstrate the accuracy and efficiency of MitoSort, which enables reliable sample demultiplexing in various single-cell genomic applications. MitoSort is available at https://github.com/tangzhj/MitoSort.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplexing across donors has emerged as a popular strategy to increase throughput, reduce costs, overcome technical batch effects, and improve doublet detection in single-cell genomic studies. To eliminate additional experimental steps, endogenous nuclear genome variants are used for demultiplexing pooled single-cell RNA sequencing (scRNA-seq) data by several computational tools. However, these tools have limitations when applied to single-cell sequencing methods that do not cover nuclear genomic regions well, such as single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq). Here, we demonstrate that mitochondrial germline variants are an alternative, robust, and computationally efficient endogenous barcode for sample demultiplexing. We propose MitoSort, a tool that uses mitochondrial germline variants to assign cells to their donor of origin and identify cross-genotype doublets in single-cell genomics datasets. We evaluate its performance by using in silico pooled mitochondrial scATAC-seq (mtscATAC-seq) libraries and experimentally multiplexed data with cell hashtags. MitoSort achieves high accuracy and efficiency in genotype clustering and doublet detection for mtscATAC-seq data, addressing the limitations of current computational techniques tailored for scRNA-seq data. Moreover, MitoSort exhibits versatility and can be applied to various single-cell sequencing approaches beyond mtscATAC-seq, provided the mitochondrial variants are reliably detected. Furthermore, we demonstrate the application of MitoSort in a case study where B cells from eight donors were pooled and assayed by single-cell multi-omics sequencing. Altogether, our results demonstrate the accuracy and efficiency of MitoSort, which enables reliable sample demultiplexing in various single-cell genomic applications. MitoSort is available at https://github.com/tangzhj/MitoSort.