Aristolochic acid I induced mitochondrial Ca2+ accumulation triggers the production of MitoROS and activates Src/FAK pathway in hepatocellular carcinoma cells
{"title":"Aristolochic acid I induced mitochondrial Ca2+ accumulation triggers the production of MitoROS and activates Src/FAK pathway in hepatocellular carcinoma cells","authors":"Yongkang Hu, Qi Zhang, Wenjuan Jiang, Xian Wang, Xinlong Guo, Langqun Chen, Siyu Cheng, Jiahui Ying, Jing Ye , Liang Zhang","doi":"10.1016/j.cbi.2024.111269","DOIUrl":null,"url":null,"abstract":"<div><div>Aristolochic acid I (AAI) is one of the nephrotoxic and carcinogenic compounds in Aristolochic acids (AAs). Recent studies have reported its promoting effect on hepatocellular carcinoma. However, the underlying mechanisms of AAI for the development of HCC is still unclear. Here, we found that AAI exposure caused alterations in mitochondrial function, which featured with increased ATP level and mitochondrial membrane potential, accumulation of mitochondrial Ca<sup>2+</sup> and mitochondrial ROS (MitoROS) in Hepa1-6 and HepG2 cells. The restriction of mitochondrial Ca<sup>2+</sup> uptake alleviated these effects. Our results showed that increased MitoROS was associated with AAI-induced migration and invasion in HCC cells. MitoROS/Src/FAK pathway was involved in the AAI-induced migration and invasion of HCC cells. In summary, our study showed that AAI affected mitochondrial metabolism of HCC cells by promoting the accumulation of mitochondrial Ca<sup>2+</sup>. These effects resulted in the activation of the MitoROS/SRC/FAK pathway in AAI-treated HCC cells, which in turn induced cell migration and invasion.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"405 ","pages":"Article 111269"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279724004150","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aristolochic acid I (AAI) is one of the nephrotoxic and carcinogenic compounds in Aristolochic acids (AAs). Recent studies have reported its promoting effect on hepatocellular carcinoma. However, the underlying mechanisms of AAI for the development of HCC is still unclear. Here, we found that AAI exposure caused alterations in mitochondrial function, which featured with increased ATP level and mitochondrial membrane potential, accumulation of mitochondrial Ca2+ and mitochondrial ROS (MitoROS) in Hepa1-6 and HepG2 cells. The restriction of mitochondrial Ca2+ uptake alleviated these effects. Our results showed that increased MitoROS was associated with AAI-induced migration and invasion in HCC cells. MitoROS/Src/FAK pathway was involved in the AAI-induced migration and invasion of HCC cells. In summary, our study showed that AAI affected mitochondrial metabolism of HCC cells by promoting the accumulation of mitochondrial Ca2+. These effects resulted in the activation of the MitoROS/SRC/FAK pathway in AAI-treated HCC cells, which in turn induced cell migration and invasion.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.